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Introduction

Part I: Magnetism, from the bulk to nanomagnets

Part Il: Behaviour of a nanomagnet (macrospin)

Part Ill: Nanoparticle assemblies, from models to experiments
(Experimental results on diluted nanomagnet assemblies)



Motivation and potential applications
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Fundamental questions

m=) Understand magnetism at the nanoscale

Nanoparticle = intermediate between molecule and bulk material

Potential applications v’ Biology / health

* Target drug delivery
» Hyperthermia (cancer treatment)
» Contrast agent for MR

Molecular imaging & therapy

Improved
imaging

Localized
therapy
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L v, Motivation and potential applications

v Spintronics (memories, transistors, oscillators, sensors...)

m=) electronics using the spin of electrons

Ferromagnetic Material (FM) ~MTJ for write

. operation
Gate | \; [
Tunnel Barrier Spin transport
Silicon

Diagram of Toshiba's spintronics-based MOS field-effect transistor

v Information storage

Information “0” Information “1”

G, G
=
tsay

Hard drive



Motivation and potential applications
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v' Catalysis
— Catalytic activity of transition metals (and alloys)

N g i !

50 nm

w4 g { i H’

In-situ carbon nanotube growth, du to the metal
particle. Fe, Co and FeCo are used as catalyst.

fuel-ce

7 5%

Co-Pt particles on carbon, for

Sy

Il'éppl'icaiions
Why investigating the magnetic properties?

v Can be useful for the determination of the particle

: : size distribution in an assembly
New information -

v" Indirect information on the particle structure
— (interface, shape, chemical arrangement...)

Magnetism is sensitive to the electronic structure: fine probe of atomic changes
m=) Monitor changes in the nanoparticle structure (with annealing, reaction...)



Part I: Magnetism, from the bulk to nanomagnets

« Basics on magnetism
(magnetic field, magnetic moment, magnetic order...)

« Magnetic anisotropy, magnetic state
(compromise between the different energy contributions)

« Going to small sizes, monodomain particles and other effects



Magnetism: basics
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Magnet =) North and south pole P

Produces a magnetic field @) Field lines (stray field)

Magnetic dipole =) Magnet = ensemble

i~ di Stray field f
of magnetic dipoles ray field map or a

magnet

Magnetic moment = elemental “piece” of a magnet

Energy (Zeeman) of a magnetic moment m in an
external magnetic field B :

E=-m.B

Current loop, i i :
Magnetic moment : m = IS m=) The moment “wants” to be aligned along

the field direction (like a compass!)



Magnetic matter, M and H
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Maxwell equations for magnetism (statics)
Vector fields H, B,

/ ‘l' Magnet.ization divB =0
Magnetic (magnetic moment
field Magnetic per volume unit =0 .
| indSction outside a magnet) rot H=| -~

Charge currents

with the definition: B =, (H+M)

At rest (no current), we have: = Different approaches to calculate H at a
rotH=0 and divH=-divM certain point, created by a given M field.

e r P Same expression as the electric field
H’“t"ﬁ created by a charge distribution
+++++++ S . .
* Volume density of “charge”: p,,= —div M
« Surface density of “charge”: ¢,,= M.e,
JE— (Magnetic “potential” solution of a Poisson equation)
mmmmm—e

Dipole sum Amperian approach-currents ( Coulomb approach-magn@

For a magnetic piece of matter, the magnetization M creates
a magnetic field H, outside and inside the material




Magnetic field and magnetization
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B =y, (H+M)  Rk: B is expressed in Tesla, while H and M are in A/m.

Difficulty: the magnetization M of a material depends on the total field H

...and H depends on the magnetization
p gnetizati \ M(H)
== H = Hy + Hy(M)

7\

Externally fixed by “Demagnetizing” or “dipolar” field,
the experimenter created by the magnetization

== Self-consistent problem, difficult to solve!

Exact calculations can only be performed for a few specific cases
[and it is necessary to know the relation M(H) between M and H]

The value of H inside a material
can be fixed experimentally (with
particular geometries)

(b)
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Demagnetizing field

For a uniformly magnetized ellipsoid H; = —N M
He

Tensor (demagnetizing factor)

Magnetization Produces Apparent
Suface Pole Distribution

Particular case of a sphere
with a uniform M

— . g Hqy =-1/3 M inside the sphere
S = = n
—)-SE HD n —m @
s = n
78 BN H and B are also uniform in the sphere
Demagnetizing Field Due to

Apparent Surface Pole Distribution

v There exist geometries

of particular interest, / %
where H; = 0 n \
] " H~’

The true H inside the material Ways of measuring magnetization with no need for a demag correction
Is the one imposed toroid

long rod thin film



Magnetic response
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M(H) characterizes the magnetic response of a material

m=) Different behaviors for M(H)

Ferromagnet = permanent magnet (like iron)
==) Remanent magnetization (Mg), without any external applied field

M
Mg [ EE Hysteresis loop: “memory” effect
'3 ' Coercive field H to suppress
. ' the magnetization
Remark: for a given H field, there
,/ are many possible states...
> e B

Note: the susceptibility y is defined by M = yH (particular case: linear response)



Ferromagnetism
MEEEERRES—e———————
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While most isolated atoms have a magnetic moment,
only a few solid compounds are ferromagnetic

- Transition metals S‘li
3d electrons

Li §Be ( ) B: € NI|lO|F Ne

para dia dia dia dia | AF | dia dia

Na Mg Al Si P S Cl Ar

para para para dia dia dia dia dia

K Ca Sc Ti V |Cr Mn Fe Co Ni|[Cu'Zn Ga Ge As Se Br Kr
para para para para para| AF AF Ferro Ferro Ferro| dia « dia  dia  dia dia dia dia dia

Rb St Y (Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
*

para para para para para para para para para dia dia dia dia dia dia dia
Cs Ba la Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
para para para para para para para dia dia dia dia dia dia
Fr Ra Ac
Ce Pr|Nd|Pm|{Sm Eu Gd Th Dy Ho Er Tm|Yb Lu
*  para| AF AF Ferri Ferro Ferro Ferro Ferri Ferri Ferri [ para para
Th Pa U Np Pu Am Cm Bk\Cf Es Fm Md No Lw
para para

\ Rare earth elements
(4f electrons)



@ i 1 I I
L Origin of the magnetic moment

Linked to the orbital momentum and spin momentum of
electrons (negligible contribution of the nucleus)

—<m>,/gjUp =

Ion 4f 28+1L J L S J gJ o (Lp)

For isolated atoms, it depends on @) Wp 3 2 s2 &1 24

P+ (412) 3H, Bl 4 4/5 3,20

the quantum numbers L and S Nd3+(4f3) 4]9’2 6 3/2 9/2 8/11 3,27

Pm3+ (4% 51, 6. 2 4 3/5 2,40

Sm3+ (4f5) 6Hs 5 52 sp 27 0,71

Eu3* (410) TRy 3 3 0 = 0

Gd3+ (4f7) 887 o 2 I 2 7,00

Tb3+ (418) 7F¢ 3 3 6 32 9,00

. . . . Dy3* (4% SHsp 5 52 1512 4/3 10,00

The m, projection is quantized el By @ BB U

Er3+ (4f!h) Ty 6 32 152 6/ 9,00

Tm3+ (4f12) 3H, S 1 6 716 7,00

Mepr = gy HVIJ+1) ey %R, 3 W2 m 8A 4,00

An electron has a spin equal to 1/2 H Rk.:in a solid, the orbital (and spin)
_ . . momentum is often quenched
mg = +1/2 : spin “up’ .

2 possibilities
= 2p {ms =-1/2 : spin “down” ﬂ

With many electrons &) Short range exchange interaction: Eg,cpange = —Z syl
ij

Origin of exchange: Coulomb interaction + anti-symmetry Pauli principle



Ferromagnetism in metals
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NT() r"
The case of transition metals (Fe, Co, Ni)
m=) Band structure, with a different density of - | -
states (DOS) for spin up and spin down K |
electrons. Nd(e) R
_ _ o _ ; bulk C
Resulting spin polarization (magnetic moment) Bl [gmsrn | Te
m=) Itinerant (delocalized) magnetism, as opposed to the | S 1} J
highly localized 4f orbitals of rare earth elements. g e
i‘)l 1} '“ |
Ozl _ 4
O minority spin
) I T —
-8 -4 0 4
Energy (eV)
Delocalized spin density, but a schematic view with 3d74s2 n=9 n. =53 n =37
localized “arrows” is still convenient... m=(n, —n)m, =16y,

Keep in mind: magnetism has a quantum origin, it is sensitive to the
electronic configuration
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Magnetic order

v' Ferromagnetism:
Exchange favors HH

v Antiferromagnetism:
Exchange favors Hﬂ

Different magnetic orders: ferro, para, antiferro...

M;
o+ -0+ 0~ Mo
Spontaneous orientation of

" p ° the moments, up to Curie

’ ’ " temperature T,
-0 —O- O~

T
0 Tc

Compensation == No net magnetization

v' Paramagnetism:
A TR ) No exchang igibl
¢ o o o exchange (or negligible)
(T2) o |
/./ ~o. Orientation of the magnetic moments, only
with the application of an external field
(T3)
i e * - H RK.: a ferromagnet becomes a paramagnet

above T.



Another parameter: the magnetic anisotropyJ

S i

Magnetization (moment per atom)

Important parameters

for a material Exchange coupling (magnetic order)

Anisotropy (magneto-crystalline)

ANiSOtrony: the magnetic behaviour depends on the direction of the applied field
bY: the energy depends on the magnetization orientation

= & ﬁ ﬁ ﬁ Small energy difference
(related to spin-orbit

& © S ¢ ﬁ ﬁ ﬁ coupling), which reflects
the lattice symmetr

> & O o O e lattice symmetry

The two orientations are not equivalent

Easylaxis
Preferential directions (easy axis) for the magnetization, :
tilting away from these directions has an energetic cost... 9
|
Example: uniaxial anisotropy == E_./V =K, sin20

(minimum for 6=0 and 6=n) I



L Magnetic state of a bulk sample: a compromise
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Energetic compromise:
Dipolar field + exchange + anisotropy + Zeeman

== Magnetic domains

Near a dipole, the - : o Y e
created field is in Demagnetizing field (“dipolar” field) Hy

opposite direction == A uniform magnetization (large H,)
has an energetic cost

i i A configuration with domains in different
HERl P directions can be more favorable (depends
on the material, the shape, the applied field)
s
(b)

©)

..................... >

comanwats [ .
/'luu TR N

Large exchange cost
9 g (a) Large anisotropy cost

==) Domain walls width: 0o = \//A /K1

anisotropy
exchange



Going to nano-size
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Exchange versus anisotropy: dg = /A /Ky

Length scales (typically, tens of nm)

== Comparison of the Exchange versus demagnetizing field:

different energies
- Loen = A/ A/noME  (afewnm)

Existence of critical sizes

=

Rmono = 36 I—exc:h2 /80 Rcoh =95 I—exch
Single domain (monodomain), Coherent reversal
no domain wall (the atomic moments

are always parallel)

m=) Small ferromagnetic particle (R < Rione @Nd R_p)
= a single vector!

“Giant” magnetic moment (macrospin) with a Macrospin

classical behavior: p = MgV

The situation gets simpler with the size reduction!



Specific effects at nano-sizes
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Things are not so simple...

moment ()

Calculations for a
Cr surface
(Cr is antiferro)

1.8F

2.6 v
v Modification of the atomic magnetic moments = 2} 5 (b) 1
due to the surface (lower coordination) § t Lok E=iak
221
Y &
2
m=) Increase of the moment g 20} Iﬁ*{.
: ¥ty
g€ 18} "}’-I*
5 e 16h"bulk Bladatat -1
25 ° = Cr(100) E" '
201 o sxniey 146100 200 300 400 500 600 700
1.5 4 ™ o T T T T T T L—
1.0 4 - : . . E S (c)
o5 ' g i FepyarT=120 K J
s 3.0 q‘yb;‘
(131 R ——— E,- b
1 0 1 2 3 4 5 6 & Ny
plane number (0 at surface) g 2.6F 3 EN
Q - ]
g 220 bulk - — — — — — "H#L -
2
Ey
=

0 100 200 300 400 500 600 700
Cluster size N

Experimental measurements
on free clusters




Specific effects at nano-sizes

—
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XMCD measurements (Co L edge)
v" Modification of the magnetic anisotropy
due to the surface/interface = e
=8
B 10- Co atoms on a Pt(111) surface "zﬁ‘;
8..
;El: 1 1 1 1 1 ﬁ|=3
© a 775 780 785 790 795 800
%E) L1o CoPt Photon Energy (eV)
< 47 & Evolution of the orbital moment /
X hep Co spin moment ratio
21 9%
""" S e e S e Co/Pd multilayers
0"‘,".‘.’.’T',‘.’T'.‘;_,'._.".‘.—,'T'.".'—.',-JT'.‘.'_,‘.”.": ,”,".“.‘.'T',_;-.'I"— 15
0 5 10 15 20 25 30 35 40 aceillly e e o |
n (atoms) o Ol

Interface anisotropy

Kegr® tco (mI/m?)
[}
o

&
n

T
—
Ly

=> Transition between in plane and perpendicular
orientation of the magnetization, depending on
the Co layer thickness 0 .




Specific effects at nano-sizes
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v’ Effects linked to structural modifications (distortions, geometries specific to
small particles...) (©)

Bimetallic

particles,
alloys
Icosahedron Decahedron
. . . 0.1 - NigoCop/RuMNigoCozo
+ other subtle effects (modification of the magnetic .
. . . g+ I [ ]
coupling/order, dynamical behavior...) S oot \ ——
) S - S!ﬁ'-ﬂ‘
X (a) ferromagnetic
_0.05 1 A 1 " |
0 1 2 3
Tgre. NM

Trilayer Nig,Cu,,/Ru/Nig,Cu,,



Part II: Behaviour of a nanomagnet (macrospin)

Magnetic anisotropy of a particle

Stoner-Wohlfarth model (T=0), macrospin switching

Relaxation (non-zero temperature), superparamagnetism

Equilibrium vs. Blocked regime



Key parameters for a nanomagnet
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Parameters characterizing a monodomain nanomagnet

Volume V
. ' = Vectorg=pum
Magnetic moment g = Mg V ( H=pm) Macrospin
Magnetic anisotropy energy K = K4 V
m=) Type of anisotropy : simplest case = uniaxial A
K

Magnetic anisotropy energy (MAE) = energy barrier to
switch the magnetization direction, along the easy axis \

T T T 1
0 45 90 135 180
()

Rk.: Because of the size reduction, Mg and K _« may be different from the bulk value



Magnetic anisotropy of a particle
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Several sources of anisotropy

Shape anisotropy: The dipolar (demagnetizing) field depends on the
magnetization orientation

Easy axis along the
. . More favorable than
longest dimension:

RK.: For an ellipsoid, with one long axis (c/a ratio > 1), uniaxial anisotropy

Magneto-crystalline anisotropy: Linked to the underlying crystal lattice (as for the bulk)

+ Surface contribution
(broken bonds)

Additional facets make different
orientations non-equivalent

In any case, the magnetic anisotropy
reflects the symmetry of the particle




Magnetic anisotropy of a particle

A uniaxial anisotropy is a good approximation (but we may go beyond...)

Expression of the anisotropy energy: E.. = Ksin%0

Equivalent to Eani/V = — Kt mz2 (minimum for m, = +1)

i Angle 6 between the easy axis (z direction) and the magnetic moment

|

Unit vector m = p/p of coordinate (m,, m,, m,)

K.y effective anisotropy “constant”, anisotropy energy per volume unit

Bi-axial anisotropy: | E,,/V=K; m,?+ K, m?

With K, < 0 <K, =% In the hard plane (x,y), the direction x is more favorable

The smallest energy barrier to switch the magnetization (from +z to —z) is simply K,V,
and corresponds to keeping m,=0



L
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Stoner Wohlfarth model

Uniaxial macrospin, under
an applied field H

Expression with reduced units: E/K = sin?6 — 2h cos(6—-o)

With
== Function of several variables E(h,0,¢)

Total energy

h= H/HA and Hp = 2Keff/(“0MS) > “Anisotropy field”

¢ = 45°

45 90 135 180
0 (degree)

E = K4V sin?0 — pyH MgV cos(6—o)

Anisotropy / Zeeman

Total energy:

With an applied field, there is one stable minimum
and a metastable one, as longas H < H,

For H=H_, the metastable minimum disappears
m=) Only one stable orientation

The magnetization can stay in the metastable
minimum, until it switches (at H,)

In this example (¢p=45°), this happens for H=H,/2



Stoner Wohlfarth model
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Other example, with ¢=0°

The macrospin is initially pointing
in the —z direction

The field is applied in the +z direction

Nothing happens, until H=H,
where it switches along the +z
direction

Total energy

With no applied field, the -
switching energy barrier is 0 45 90 135
AE = KV 0 (degree)

AE decreases when H increases, and vanishes for H=H,,

" v Only the minima are populated
(no statistical occupation)

In this model, we suppose that T=0 =) -
v Switching only if AE=0

- (no thermal activation, static theory)




Stoner Wohlfarth model

__/
B S For a given field, we can find the values of 8 minimizing E
. . oE 0°E
The minim —=0 and — >0
e minima satisfy 0 ( P ) 2
The switching field corresponds to having simultaneously %: 0 and 6—952 0
0
From the expression of the energy, this allows us to derive the analytical expression
H° = Ha(sin* @+ cos?3¢) 32 It may be plotted as an astroid (polar plot)
The switching field depends on the
angle ¢, and is controlled by the Easy axis
anisotropy field H, =2 K4/ HoMg
Hard axis ﬂ {05
NoO size dependence
<0:r:4

RK.: the easiest switching is for a 45° angle between i~—5 0
the applied field and the easy magnetization axis



Stoner Wohlfarth model
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Experimental measurements of astroids
for an individual nanoparticle

=) Main contribution = uniaxial anisotropy

Due to the surface (additional facets)

(L-SQUID technique, with a 3 nm diameter
Experimental fcc Co nanoparticle)

Jamet et al. Phys. Rev. Lett. 86, 4676 (2001)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
I"'OHy(T)

Relevance of the Stoner-Wohlfarth
macrospin model for small nanomagnets!

Simulated



Stoner Wohlfarth model
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sat

M/M

One can also compute hysteresis loops

Im
0" . ot
10° et
v" For each orientation of the field with 4
respect to the easy axis ;f, 0§ &0°
m=) Coercive field between 0 and H, % 1 15 L
Remanence between 0 and Mg |
— i

1,0 e ———

v' For the case of an assembly with randomly
oriented easy axes

m=) Coercivity: Ho/H, ~ 0.48
Remanence: Mg/Mg = 0.5

0,5 -

0,0

0,5 -

Rk.: H scales linearly with the anisotropy
s 2 4 o 1 2 3 constant K i
No size dependence (model at T=0)

-1,0




Non-zero temperature: relaxation
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. : A
Probability to overcome the energy barrier,

due to thermal energy

m=) Spontaneous macrospin switching K
Switching frequency (Néel relaxation): Y

v = vy exp (-AE/ kgT) "o
m=) Stability time of a given orientation: t = 1/v

Without external field, the barrier is AE = K
) 1=1,exp (K/kgT) with atypical t,~10°s

If the measurement time t,,, is smaller than the switching time
=) “blocked” regime: the macrospin keeps its orientation and can be detected

If the measurement time t,, is larger than the switching time

mm) “superparamagnetic” regime: occupation of the two minima,
the average magnetic moment is zero (like a paramagnet)
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Superparamagnetism

Experimental technique

The frontier between the blocked and superparamagnetic

regime is a question of measurement time

Measurement time

magnetization

1 100s

ac susceptibility

10761005

Mossbauer spectroscopy

1072107 "s

Fer I’Cll'l'lé-l-gl'l(_‘t ic resonance

10795

Neutron scattering

For a quasi-static
characterization,

typically t,, ~100 s

U

Blocked regime
for K> 25 kgT

v" Blocking at low temperature

Concept of blocking temperature

1071210785

)| Tg such that t =1,

t(S)

1018

Age of the
universe

100 s

K/ (k)

{Under Tg = blocked regime

Over Ty = superparamagnetic regime (equilibrium)



Superparamagnetic limit

S
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with T = 7,

T =1y exp (K/ kgT)

o

T = K/ [Kg IN(x,/70)]

The blocking temperature is proportional to the magnetic anisotropy energy
== Since K = K V, it means that T scales with the particle volume

Small particles becomes superparamagnetic,
except at low enough temperature

Ex.: for a 3 nm diameter Co particle, magnetization
switching on the ns scale (at room temperature).

This can be a problem (or not), depending
on the targeted applications

Magnetic data storage: needs stability

:>..

MRI contrast agent: needs fluctuation

log(7) [s]

20
Age of universe 7

10
1 year g

-10 A

20
Hyperthermia therapy: needs dissipation} \

r [nm]

trrrrrrroorTioL

2 4 b 8 10 12 14 16 18 20

/

Avoid the super-
paramagnetic regime!



Equilibrium regime
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Equilibrium regime = superparamagnetic regime

Statistical population of the energy landscape

m=) Properties governed by the partition function
(thermodynamics, Boltzmann distribution)

When T much larger than Tz, no more influence of the anisotropy (K << kgT)
m=) Exactly the same situation as a paramagnet: E = -p, H.l

oMsV H 2 .
Reduced parameter. ¢ = ”0% ZLan = 7 sinh Fran = kT [In(§) — In(2sinh &)]
‘B S
1
Analytical solution for m,(H)
Langevin function:
1 —
L(zx) = coth(x) — - = ’

U

) o H kgT ‘
Mmeq = jt| coth : — - : . . . , .
kgT o H -20 -10 0 10 20




Equilibrium regime, m(H) curves
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 Influence of temperature Size <

increase

==) Lower slope when T increases S,

Temperature
increase

* Influence of particle size

sa
o

m=) Higher slope when the
particle size increases

Scaling property: - J

In the superparamagnetic regime -1

m/m .

(negligible effect of anisotropy), the H (arbitrary unit)
m(H) curves display a H/T scaling

=) Equilibrium response (no remanent magnetization),

When Tis close to Tg but with an influence of the anisotropy

More complicated situation! =) No analytical expression for m(H,T)



Magnetic susceptibility

S .
M=y H Small perturbation (H—0), linear response
Equilibrium susceptibility: ™~ Susceptibility
* High enough above Ty
:> Curie Law: Series expansion of the Langevin function:
¥ IS proportional to 1/T Liz)=1r - La® + 22 — Ao’ + 2+
pop” H
m —
A 3kgT

» General case (anisotropy taken into account)

m=) The parallel and perpendicular susceptibility depend on the

dimensionless parameter ¢ = K/(kgT)
2 =70(1+25) and y, =y,(1-5)
Taylor expansion as a function of ¢ or 1/c for X | and XL 3
- 1)

with S~1—— (o
20

W

For a randomly oriented assembly:

"f_l 2 by . JU“Oluz/V
X=3X)+3XL ) J=Jo=

3 3kgT
TS Simplification: Curie law still valid!
(no effect of anisotropy)
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Blocked susceptibility and transition

S

In the blocked regime (extreme case: T=0)

 If H parallel to the easy axis: nothing changes (H <<H,,)
» If H perpendicular to the easy axis: tilt of the macrospin (no switching)

Z1=0
2
— v, = Holc/V

2K

= Blocking temperature

g / (depends on measurement time)
e '

S

&S

=

2

= Equilibrium

Q2 (superparamagnetic)
2 :

O [Blocked!

(n '

3 '
7 \:

T i T T T T T T T
0 25 50 75 100 125
T (K)

1
150

Abrupt change of the susceptibility, _ _ _
when reaching the blocking temperature == Signature of the magnetic anisotropy

For a randomly oriented assembly:

“Blocked” susceptibility:

Iy =2%./3

usceptibility ¢ (arb. unit)

'
\ '

'
LI
'
Vo
I
'
L
W
'
'
'

and

Blocking temperature
(depends on measurement time)

¥, T L T $ 1
50 75 100 125 150
T (K)



Part lll: Nanoparticle assemblies, from models to experiments

 Theoretical framework

« Magnetic anisotropy and particle size distribution
(zero-field cooled/field cooled curves)

« Experimental results (Co, CoPt, FePt and FeRh nanoparticles)

« Advanced magnetic characterization
(Interactions, bi-axial anisotropy...)

—y Modeling of remanence curves



From model to real samples

Our goal: determination of the intrinsic properties of magnetic nanoparticles
=) Beyond a simple descriptive analysis (susceptibility peak, coercive field...)

Keep in mind that they can differ from the bulk ones (size and interface effects)
m=) Link between the magnetic properties and the structure, chemistry etc.

For a real sample, we have a size distribution, the temperature is T#0...
mm) A realistic description requires a cautious modeling

preformed particles deposited under vacuum,

Our experimental approach: " . . .
P PP diluted in a non-magnetic matrix

Theoretical framework

Non-interacting macrospins, with a randomly oriented °
uniaxial (or bi-axial) anisotropy, Néel relaxation ] I -

_ * Moment: u = MgV Q
For each particle _ :
* Anisotropy: K = K4V



Cluster deposition

’ L
Low energy cluster beam deposition,

Deposition of preformed clusters based on a laser vaporization source
(physical route)

v’ Deposition under ultra-high vacuum
He Nd:YAG laser

Quadrupolar deflector

v’ Adjustable composition (target)

@ Lens v Capping or co-deposition in a matrix
’ o m=) - Protect the particles
(+U, V) » Avoid coalescence

Mass-selected

cluster beam v’ Possibility of size selection
(quadrupolar electrostatic deflector)

Electron gun

All the particles have the same velocity

I:> Selection of kinetic energy = mass selection

Substrate

Typical particle size ~ 3 nm diameter

Diluted assemblies of particles, which are then far enough

Random deposition == from each other to avoid magnetic interactions



i LM Nanoparticle assemblies
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Examples of 2D assemblies (TEM grids)
« Adjustable particle size, | g
independently from the
surface density.

\

Diluted assemblies
(avoid interactions)

- uU=80V

' i CoPt ticl
v" Typical concentration for 3D oPt nanoparticles

samples ~1% in volume  Without size selection With size selection

Size distribution of CoPt clusters Size distribution of CoPt clusters

* Relative diameter dispersion

lower than 10 % with size

selection. 3
ADI/D,, ~ 7-8 %

il 0
01 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Diameter (nm) Diameter (nm)



Magnetic anisotropy: ZFC/FC measurements

_/

j Zero-Field Cooled / Field Cooled (ZFC/FC) protocol

Low field susceptibility curves, as a function of temperature
m=) blocked — superparamagnetic crossover

Requirement: the sample has no remanent magnetization at 300 K
mm) Superparamagnetic sample
» We start from a zero applied field (H = 0), at room temperature: M =0
» The sample is cooled down (2 K), with no applied field (zero-field cooled): M =0
* Once at low T, a small field is applied (H ~ 50 Oe, B ~5 mT)

The measurement starts

 Slow increase of T, with applied field H: for each T the magnetic moment is
measured =) M,(T)

« Once room temperature is reached, slow decrease of T, with the same applied
field H (field cooled): for each T the magnetic moment is measured wmm) Mc(T)

ZFC/FC = “round trip” (2K — 300 K — 2 K), with applied field H



ZFC/FC measurements
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Sample made of ferromagnetic nanoparticles: ZFC # FC
W) Signature of the magnetic anisotropy

Dynamical process
2,5x10™ |
U RANG
Temperature sweep at a rate EXNT N
vy =dT/dt £ | AN
£ 1,5x10"
o
= I
What we would like to know: ?,OX10~: i ,/\
S
" : £ r
. I_nflue.ncg of_the dlff_erent parameters S 500 | § /‘ ZEC
| (size distribution, anisotropy...) 3
. . 0,0 L | L 1 i | i
» Analytical expression of the curves? 0 =0 100 kb 208

T K]

When T increases, it becomes possible to overcome the anisotropy energy barrier
m=) The magnetic anisotropy energy distribution controls the entire curve.

The curves are often only qualitatively analyzed (with a focus on the peak temperature)

v Quantitative analysis of experimental curves ®8) Best fit procedure



ZFC/FC modeling

_/
jAssemva of randomly oriented uniaxial identical macrospins
i . N ~ Aeq _'_inXb . ( K ) Néel
() = i T =1/v~1exp | —— .
Dynamical linear susceptilibilty: (w) Tiot with [v=roep (25 ) vation
mmm) Differential equation for the ZFC/FC protocol: —
\ FC: analytical
[ f |
ld_M M:/’LOMZH ormula
dt BkBT = 3
:
2 .

- - %—ZFC, t
Solution for a_ltem peratur_e sweep: | ZFC 2aroth order
Remarkably simple approximate expression . . @pproximation
(very close to the exact one) 0 10 820 30 40

T(K)

MSFC(T) = MbeK_V& +Meq(1 —e_v&) with Jt(T) effective waiting time

T/ K \7%
5t(T) ~ 0.6727 — (} T)
UT \FB

mm) Progressive crossover from blocked iosuperparamagnetic fequilibrium) regime
 Improved description compared to the abrupt transition model where the macrospins

are either fully blocked or superparamagnetic, with a transition at 1, = K
kg In(voTmeas)




ZFC/FC simulation
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« Extension of the blocking temperature concept, taking into account the
temperature sweeping rate: crossover temperature T, (depends on several parameters).

- Similar expression for the FC curve, with MpF© = M, (Ty)
mm) Semi-analytical expression, progressive crossover model

Efficient simulation of the entire ZFC/FC curves
for an assembly with a particle size distribution

For a single size (volume V known), T .., can directly
provide the value of the anisotropy constant K_g: w=005 |

KetV ~ 25 KgT ax \

The same “rule of thumb” procedure cannot be used
with a size dispersion (by using the mean or median

M (arb. unit)

volume) /i _

O | ) [Cpeem——]
The size distribution has a strong impact on the curves T . .
=) Modifies the ZFC peak width and position T (K)

Uncertainties on the size-distribution =) Significant potential errors on the anisotropy



L

RIS P s j Rk.: The blocking temperature is only relevant for a single size!

ZFC/FC simulation

Q
N

Magnetic moment (arb. unit)

(]
(=3
N
-
(]
5

Effect of the size dispersion

. /|‘2|I=c
25

c) T.0O

Magnetic moment (arb. unit)
Magnetic moment (arb. unit)

/

5|0 I 7|5 I 100 0 I 5|0 I 1(|)O I 1£|'>0 I 2(|)0 I 2!'|>0 I 300 0 I 5|0 I 1(|)0 I 1£|'>0 I Z(I)O I 2!';0 I 300
T (K) T (K) T (K)
Single size Lognormal distribution Lognormal distribution
(dispersion w=0.2) (dispersion w=0.25)

Keep in mind: The ZFC peak temperature T, iS not
the blocking temperature of the mean particle size!



Quantitative analysis using a “triple fit”

=

S
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“triple fit” of experimental curves

: 1

Simultaneous fit of ZFC/FC curves and
M(H) loop at 300 K (superparamagnetic)

The fit (Langevin functions) of a super-
paramagnetic magnetization loop is not
very discriminating

1.5- :‘é\ e
£ /« PDF (D,,,)
-e_ ‘
—~ 8,
~
o
E 1- 8
o 5
[+ o]
= a
P 1
S 8
g 0.5
0 : . . v T (K)
0 50 100 150 200

Co particles in Au

4 { Co particles
in Au

N
L
°
FS

PDF (D,,)
o
~

m (10 A.m2)

8

D % (nm) °

M ,H (T)

-41-::::‘-5’-’511:""-'1-'*--::i-:«\w ’
-4 -2 0 2
Different size distributions can fit the M(H) curves

Use of the “progressive crossover model”
for ZFC/FC curves

Adjustable parameters:

» Size distribution
* Number of particles
 Anisotropy constant

=) Increased reliability and accuracy

A. Tamion et al., Appl. Phys. Lett. 95, 062503 (2009)



® g . .
L “triple fit”

Accurate and efficient fitting procedure (triple fit)

==) Reliable determination of the magnetic size distribution
and anisotropy for nanomagnet assemblies

. ‘
. 'ED& FC 2.0x107 4 m(H) et
6.0x10°4 & ; /
3 _1ox0'1 at 300 K § % 1M VH KgT
i ] H)=N_M; [| coth| Zos™ " | "e f(V)dV
. .g?u B m(H) =N, j co ( o j v )
‘: E l’;
— 9 $
':E. 4.0x10 2 P
-3 . y
2 0 2 4
- b H (T)
2.0x10°1¢ -~
TS :_‘ﬁ{{%v’é‘-%q - . ko .y 9y
, , , %800 v’ Afailure of the “triple fit
- < A can be the signature of
Example of fit for 3 nm Co nanoparticles in germanium non-negligible interactions

A. Tamion et al., Phys. Rev. B 85, 134430 (2012). between the particles



Coercive field and anisotropy

L
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CoPt nanoparticles (3.8 nm diameter)

Stoner-Wohlfarth model, at 0 K 4.0x10" T
]y
=) Coercive field H. linked to the “]

2.0x10

anisotropy 1 Iy
E o . 1
. < . f
H(T) is always lower than H(0) Y | V f 2K
1 —+—6K
=) Extrapolation to T=0 S g e 10K
would give ~H,/2 50 K
-4.0x10.8 T T T T
-0.4 -0.2 0.0 0.2 0.4
3 (e} Dm=3 nm, =04 LIOH (T)
0T\ ® D, =3nm, 0=0 F. Tournus et al., J. Magn. Magn. Mater. 323, 1868 (2011).
g Equation
& " °  oé—sizedispersion Sharrock formula for the evolution of H.(T)
S N '\.. le)
= o}
0.5: e HA(T.V)y= HAT = 0K)[1 — (25kgT/|K |V )*'*
. Single size —ag ==) Not valid for a size dispersion!
& % % B & A e Hazardous method...

T(K)

A. Tamion et al., Phys. Rev. B 85, 134430 (2012). . .
Rk.: Beware of a direct comparison of H; values...



Scaling properties, experimental examples

S
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F. Tournus et al., J. Magn.

Magn. Mater. 323, 1868 (2011) CoPt nanoparticles (3.1 nm diameter)

a b 10
25 " 8.0x10™ -
p0® ®°°
',;‘ 300K o 1/T evolution of the
& g * 200K P susceptibility (m at
o ) low field)
S 00 ’ < 4.0x10™- - o
E | ‘ {?0/090
3 M
-0.5 4 s 1
] .5]‘ M
iy - T ’ . T T T T 0.0+ T T T 1
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.04
uHIT (TKY) 1T (K"

Verification of the H/T scaling in the
superparamagnetic regime

Parallel direction
Perpendicular direction

No signature of interactions:
no “sample shape” effect

RK.: interactions can
induce a scaling failure

M (arb. unit)




Magnetic size and apparent size
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JOURNAL OF APPLIED PHYSICS 110, 063904 (2011)

Demixing in cobalt clusters embedded in a carbon matrix evidenced
RSN REECR by magnetic measurements

Alexandre Tamion,1 Matthias HiIIenkamp,“E‘a)Amaud HiIIion,1 Florent Tournus,1
Juliette Tuaillon-Combes, ' Olivier Boisron,' Spiros Zafeiratos,® and Véronique Dupuis1

| -

g
£
g —_ as prepared
& b annealed
o c
¥ -
0
[
Annealed RS i 2
£ HH (T)

[CJTEM
L ' =l YN - as prepared C
0 50 100 ——annealed C

PDF (D) (arb. units)

D (nm)

PDF (D) (arb.unit)

FIG. 1. Transmission electron microscopy (TEM) images of as prepared
(a) and annealed (b) samples with Co clusters embedded in amorphous car-
bon. The inset displays the deduced size histograms, together with the best 0
fits corresponding to a lognormal distribution.
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A recent study on bimetallic nanoparticles: CoPt (and FePt) cluster films

m=) Magnetic properties, in relation with their atomic structure



CoPt (and FePt) alloys

iILM , ——
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Al phase

» Chemically disordered
« fcc cell

L1, phase

» Chemically ordered
* tetragonal cell (c/a < 1)

The L1, phase has a huge magnetic anisotropy constant (K 4~ 5 MJ/m3)
===) Interesting for magnetic storage applications

The L1, phase is stable at room temperature, but Al is metastable
===) Chemical ordering obtained by annealing

L1,:S=1
Al:S=0

Nanoparticle

Bulk

With size reduction, chemical order phase
transition shifted and smoothed

Disordered Al

Degree of order S

m==) Threshold size for L1, stability?

€ colFe
‘ Pt

C

| | ! | | |
0.6 0.7 0.8 09 10 11 12
D. Alloyeau et al., Nature. Mater. 8, 940 (2009) ; T
K. Sato, Nature Mater. 8, 924 (2009). &




CoPt/FePt: Structure and size reduction

—
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* As a function of particle size, competition
between different geometries

=== Multiply-twinned particles

Icosahedron Decahedron Truncated-
octahedron

« Various theoretical predictions

===) L1, ordered decahedron
ShOUId be favorable Core-shell icosahedron with

depleted subsurface shell

G. Rossi et al.
Faraday Discuss.

M. Griner et al., Phys. Rev. Lett. 100, 087203 (2008) 138, 193 (2008)

%}! From cubic to tetragonal: 3 equivalent directions
.w for the chemical order (variants)

: : : Iy N

» Antiphase, c-phase or twin boundaries between \ H /\[

different L1, domains R
g - Examples of planar =8 T T
=== Observed in f!lms and Iarge particles defects in a L1, crystal %ﬁ{m‘
Are they met in small particles? Ala e,

A. Alam et al., Phys. Rev. B 82, 024435 (2010)
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Intrinsic properties of ordered particles?

y -

i M? gg * Influence of the environment (interface,
Spbrsids magnetically dead layer, inter-particle s g
AP RN RS s . . CH
3 ’é,;%? interactions...) 2
Sl ot DB s
o by pegeele opy bl
S e - : : : .
OB Intrinsic properties of the nanoparticles? : B e
FegoPts7Al 62

C. Antoniak et al., Nat. Commun. 2, 528 (2011). S. Rohart et al., Phys. Rev. B 74, 104408 (2006).

Synthesis itself is a challenge (well defined size, no coalescence, no pollution...)

===) Our approach: diluted assemblies of nanoparticles, prepared by low energy
cluster beam deposition, and embedded in a carbon matrix

The intrinsic magnetic properties of nano-sized chemically ordered
CoPt particles are difficult to determine reliably

=== Combine structural and magnetic characterizations of CoPt nanoparticles



Size selection of CoPt particles
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Magnetometry measurements

=== Size selected CoPt nanoparticles (3 nm diameter), as prepared

— — -CoPt unselected
CoPt size-selected

- - —CoPtunselected | 2
CoPt size-selected

f(D)

10

10 0 ' 2

D (nm)

Although the size dispersion is greatly reduced with size selection,
the ZFC peak is not much narrower...



Anisotropy constant dispersion

S
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The usual E_; = K4V
model is no more valid

=)

Anisotropy constant dispersion

—I K . dis;)ersion — K, dispersion '
....... Single K, :.E ~------Single K,
Gaussian distribution of K oxto” é
v’ Relative dispersion ~ 40% S o 3
v <Kg> ~ 200 kJ/m3 | -V NN
R 20 30 40 51 o 2 40 s s

T(K)

Such a K4 dispersion was not detectable for particles without size selection
mm) A narrow size distribution is necessary

I—Y2|Zl1latc>r;'|s
Physical origin? e
- . H K distribution
v' Composition calculated for
- g chemically

Nanoalloy v Chemlcal ord.er | § disordored CoPt
effect v/ Atomic configuration particles

9 (chemical arrangement) S v Y

3
K,, (kJ/m’)



Magnetic anisotropy evolution upon annealing
- f —_— e’

t;::l I ‘As‘-prepa‘red l 5,0){10'9-
5 No modification of _
g the particle size g . as prepared

§ . — * annealed
upon annealing S i
o

0 1 2 3 4 5 6 7 -5.0x10" 4

Diameter (nm)
,Anne;xled ] _'2 -:‘ l!.l ‘i é

u,A (T)

V. Dupuis et al., IEEE Trans. Magn. 47, 3358 (2011).

o as prepared
as prepared fit

1 2 3 4 5 6 7 Q%% s annealed

Occurence (arb. unit) 2

(=]

Diameter (nm) :E: g, annealed fit
c
>
Evolution of the magnetic anisotropy £
As prepared Annealed £
D, (nm) 3.12+0.1 3.12+0.1
o (nm) 0.22 £0.05 022+ 0.05
Kep(klm”®) 218 £20 (293) 30 o 1o 20 30 40 %8 60 70
o (kIm?) 37% + 5% X% + 5% T (K)

This increase is much smaller than what is observed in the bulk
To fix the ideas: with K4 =5 MJ/m3and D = 3 nm =) T, =200K
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X-ray magnetic circular dichroism (XMCD) -

Dichroism at the L absorption edges

=) magnetic momen
of each element

ts (spin and orbital)

XMCD Co-edge us (up/at.)  Pt-edge ps (up/at.)
at various Ly 3 ur (upfat.) ue (upfat.)
edges Hifks Hi/Ks
CoPt as-prepared 1.67 0.47
0.13 0.07
0.077 0.150
CoPt annealed 0.52
0.20 0.10
0.101 0.192

v No Co oxidation, no “dead layer”
v" Very high mg value (Co bulk = 1.6 pg/at)
v" Increase of mg, m_and m /mg upon annealing

Annealing induces a change of the

magnetic moments

mm) Al — L1, chemical ordering?

F. Tournus et al., Phys. Rev. B 77, 144411 (2008).
V. Dupuis et al., J. Magn. Magn. Mater. 383, 73 (2015).
2.0

CoPt as-prepared (Lm Co edges)

=Y — —

> o )

1 [ P
QO

TEY (arb. units)
v

-
o
1

0.2 .

Q 9,04

=02 V

g R i : i : i I _

760 780 800 820 840
Photon Energy (eV)

c

2.2
204 b
1.8 -

CoPt annealed (LZ,J Co edges)

1.6 -

TEY (arb. units)
b =
Ll

1.0

D

7&0 7&0 ' 8:)0 ' 8'1’0 ' 840
Photon Energy (eV)

Fig. 2. Comparison between the XMCD spectra at the L, 3 Co edges measured in
TEY in a 5T applied field and 4.2 K temperature at DEIMOS on 3 nm CoPt samples
before (a) and after annealing (b).
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v Structural characterization of CoPt particles in C

« EXAFS measurements (Extended X-ray Absorption Fine Structure)

« HRTEM observations



Chemical order and relaxation
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0.2

EXAFS measurements:
probe the local environment
of one type of atoms

— Annealed

As prepared - Drastic change upon

Size-selected annealing
(D,=3.8nm) ]

* Evolution of N,/Np;

1 1 Il 1
0 ] 2 3 4 5 &
R (&)

N. Blanc et al., Phys. Rev. B 87, 155412 (2013) .
V. Dupuis et al., Eur. Phys. J. B 86, 1 (2013) Al — L1, transition

Apparent c/a ratio

mmm) Different around Co
and Pt atoms:

dPt-Pt # dCo-Co

DFT calculations: “L1, like” structure
mm) Strong relaxation of the Co-Co distances

-1.0 . . .
6 9 12 15
4]

Tetragonalization
different from the bulk

1.0
a . Co edge:

c/a=1.03




(&) 3 " I .
L Transmission electron microscopy

v" Coexistence of fcc and
multiply-twinned particles

v" No chemical order before annealing

v' L1, contrast ([001] peak) after
annealing, even for the smallest particles

Quantification of the chemical order
parameter for a single nanoparticle
(S~1)

Particles with several L1, domains

Coexistence of several L1, variants
(with antiphase boundaries)

b In a single-crystal
particle of 2 nm

diameter!

STEM HAADF (Z contrast) image of a CoPt particle



@ 3 ; 1
L Chemically ordered decahedra

Decahedral particles with a chemical order

mmm) Five L1, domains with ¢ axes in different
directions

v Theoretically predicted structure

STEM-HAADF image

Particles with several L1, domains =) |owering of the anisotropy!
(+ relaxation, L1, like)

Coexistence of various structures =) Anisotropy constant dispersion

Similar observations for FePt nanoparticles...
F. Tournus et al., Phys. Rev. Lett. 110, 055501 (2013).



Chemically ordered FePt particles
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» Twinned particles with two L1, domains

* L1, order for small particles, down to 2 nm
diameter

» Chemically ordered decahedra

* No surface segregation
d001

L1, order
signature

a ™ ” »
¥ g Pt & N

Through-focus HRTEM series of a FePt nanopatrticle in the L1, phae



Difference between FePt and CoPt
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1.0

Fe edge:

Similar results of synchrotron measurements (XMCD, EXAFS) . °* cfa=100
_ F 0.0
« Magnetic moments increase = ]
After L : N
: < « Fit with a L1, chemical order o
annealing 70 R 15
° - Av1
_* Relaxation (deg.ge # dpi.py) ) "
Pt edge:
1. c/a=0.95
Magnetometry =) Evolution upon annealing very =
different from CoPt nanoparticles <
-1
v" Very large increase of the anisotropy (H; and ZFC peak) 23 : - .
. . . . k (&)
v Very large dispersion of the magnetic anisotropy energy
8x10*
" e 9.0x10°] o D et
4x10°
T o Huge magnetic E”*“’g' ]
<< ' >
N anisotropy (>.|\/IJ/m3) = 0
s 3.0x10°4 o
4x10°- for some particles : JECIEC
8x10° . 0.0] . . . , .
. 3 2 A 0 50 100 150 200 250 300

T (K)



Conclusion on CoPt nanomagnets
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v' Effort for the determination of the intrinsic properties of CoPt nanoparticles
=) Model systems, complementary characterizations

v" Original properties of CoPt nanoparticles

« Magnetic anisotropy dispersion, evolution of the atomic magnetic moments

* For chemically ordered CoPt particles, the anisotropy remains much
smaller than for the bulk L1, phase

« Existence of structures with several L1, domains, “exotic” geometries
* Relaxation of the inter-atomic distances because of finite size

v' Similarities between CoPt and FePt nanopatrticles
mm) But very different magnetic behavior!



Magnetic order: one example

eninr® wierie e ine ’ Chemlcallyordered FeRh particle

"1"" 2 3
The magnetic order can be influenced by the size reduction A A ‘, _ v«.
== Example: FeRh nanoparticles SERG <
Chemically ordered particles (B2 phase), after annealing : =5
The patrticles are ferromagnetic, down M ord eyl 7. ”
to 2 K, instead of anti-ferromagnetic oraer f S R g ey
: , (X

Chemlcally ordered FeRh particle

T T T
221~ Rh M, , edge
o0k Ton = 970K

1.8
1.6

—

1.4

XAS (arb. units)
XAS (arb. units)

1.2
1.0
0.2

: V E—— 0.0
-0-5 | R 1] ) B —vp-\., e ] ]
I 1 ! 1 S I N

700 710 720 730 490 500 510 520
Photon Energy (eV) Photon Energy (eV)

a

XMCD

XMCD

A. Hillion et al., Phys. Rev.
Lett. 110, 087207 (2013) XMCD measurements at Fe and Rh edges
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FeRh: Magnetometry measurements
——————————————

S

a) . b)
1.8x107 1 * FeRh as-prepared A1 6.0x10° 1 * FeRh annealed B2
—fit —fit
—1.2x10°4 E
E E 4.0x10 4
< <
£6.0x10™° ,
2.0x10°
0.04
0.0
0 150 0
c) .. T(K) d .
3.0x10 4.0x10°
100 K 2K
x 2 =]
H ! 5 o
1.5x10" 2.0x10 4 ..l' .
— o s o —
o c ‘.'f.w" -
E 0.0 < 00 M_,:“f:fr_r.m'
' S Sty
-1.5x10" 4 2.0x10°] g o
_..*"”J/;./
-3.0x10° . y -4,0x10°
- 2 0 2 4 -0.5 0.0 0.5
uH (T) u,H (T)
T uoH
- i D m (NM) Wmag Ketr (KJ.m%)
(K)  (mT)
As prepared 12 80 33+0.2 0.15+£0.05 127+ 15
Annealed 12 35 3.3+0.2 0.15+0.05 133+ 15

Results deduced from the “triple fit”

Strong increase of the total
magnetic moment

(m=Ms.V)

Magnetic size distribution
in agreement with TEM

No modification of the
anisotropy constant

Decrease of the coercivity:
MoHc ¢ Kot/ M

Ferromagnetic behavior down to 2 K.
No meta-magnetic phase transition!




Further modelling of magnetometry curves

_
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A. Hillion et al., J. Appl. Phys. 112, 123902 (2012)
. . . 0,3 Hz
The same ingredients can be used to simulate & He
. . . PSRN > 3H
(and fit) various experimental curves o 10Hz
30H
E o} 100;2
== AC susceptibility curves g vk
(magnetic anisotropy and relaxation time) E
=
=== Thermo-remanence curves mg(T) s B
)
o 2 40 60
== ZFC/FC beyond the linear response approx. Tis:
(influence of the applied field on ZFC/FC curves) | Comparison for 50 Oe I
== Low T hysteresis loops, with a biaxial anisotropy # Measurements
@ 4.0x10%- ----Grdorder suscept.

Data _ -
~——— uniaxial anisotropy - %
biaxial anisotropy

Linear suscept.

2.0x10°

m (arb. unit)

0.0

m (A.m?)

-2.0x10" -

A. Tamion et al.,
Phys. Rev. B 85,
134430 (2012) F. Tournus et al., Phys. Rev. B 87, 174404 (2013)

-4.0x10°
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Global fit, including a low T
hysteresis loop.

mm) Significant biaxial contribution
to the anisotropy.

CoPt magnetic properties from a global fit
e ——————————————

As prepared

Annealed (750 K)

D,, (nm)
o (nm)
Ky (kJ m™?)
oK1/ Kim
Ko (kJm™?)

3.12+0.1
0.22 +=0.05
200 £ 25
37% £ 5%
100 £ 25

3.12+0.1
0.22 =0.05
260 = 25
31% £+ 5%
150 £ 25

Size-selected CoPt nanoparticles (D = 3 nm) embedded in amorphous C

a) 8.0x10" b) 1.5x10°
4.0%10° 4 f L
= A &~ 1.0x10" Y
E
$ o0 s |
E f Es.o:w"“- ;
-4.0%10° 7 [y .
o 'f bl T AR
-8.0x10” v T 0.0 .
4 2 2 4 [ 50 100
HH (T) T (K)
Cc) toxi0®
5.0x10"

“ /

1.0x10* v -
1.0 0.5 0.0 0.5 1.0

m (A.m?)

0.3
0.60.¢

BH () H*

Fig. 3. (Color online) Hysteresis loops at 300 K (a), at 2 K (c)
and ZFC/FC (b) for as-prepared CoPt nanoparticles embedded
in C matrix. The solid lines correspond to the fit. Mean astroids
associated to the biaxial fit (d).

As prepared

a)

4

8.0x107

4.0x10° Fs

00 d

, /

8.0x10™ {

m (A.m?)

-4.0x10"

-8.0x10°

(A.m?)

m

4.0x10™° 4

b) 12x10%7

C) 1.ox10°

5.0x10°

0.0

m (A.m?)

-5.0x10"

-1.0x10° T
1.0 0.5 0.0

uH(T)

05 1.0

.3
0.60.5

Fig. 4. (Color online) Hysteresis loops at 300 K (a), at 2 K (c)
and ZFC/FC (b) for annealed CoPt nanoparticles embedded in
C matrix. The solid lines correspond to the fit. Mean astroids
associated to the biaxial fit (d).
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Further complementary measurements...

S
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The “triple fit” is a powerful approach but one still would like to go further...

v’ Biaxial contribution to the anisotropy?
) £,V = Kym? + Kym; (hard axis in the hard magnetization plane)

v’ Verification that inter-particle interactions are negligible?

v' Complementary measurement involving field-assisted switching

For ZFC/FC curves, we have a thermal switching:
what matters is the anisotropy energy K. V

mm) Strong dependence on the detailed particle size distribution

Remark: hysteresis loops are not Demanding simulations and the signal is the
straightforward to interpret : result of many contributions...

Interesing complementary measurements:

Isothermal remanence magnetization (IRM) curves

What is this? Why can they be useful?



Isothermal remanent magnetization (IRM)
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Assembly of nanomagnets
(superparamagnetic at high T)

* First, the sample is demagnetized
(cooling to low T, with zero field)

Measurement of the remanent magnetization
after having applied a given field

» The applied field is increased, step by step

IRM(H) curve =) Signature of irreversible )
magnetization switching N
E 0.6 - 2
No spurious contribution: T 04y
( Superparamagnetic particles .
3N Diamagnetic substrate, o oz H(To)i4 s
L paramagnetic impurities "

Measurements very easy to implement!



IRM, DcD and Am curves
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Direct current demagnetization (DcD)
mm) Measurement at remanence, but after having saturated the sample.

Schematic representation of the
macrospins orientations in the sample

M/M
Different initial state: 0.50 ——
IRM: demagnetized HIRM
0.25- . .
DcD: saturated in the T
opposite direction, then Mg ' A — IRM(H)]
0.00 =i
H
025 2P _
-0.50 N — . =
000 0.25 050 075 1.0
If there is no interaction H/H

(each particle switches independently)

mmm) Factor 2 in the number of switching particles: mg — DcD = 2 IRM



Am and interactions
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Am parameter:
Am = DcD/mg — (1 — 2 IRM/mg)

¢ s e
®
.,

Sj

With our approach (Low Energy Cluster Beam
Deposition), the dilution can be controlled

==) Low concentration of magnetic

nanoparticles

Am is very sensitive to interactions!

Qualitatively {

Am > 0 implies magnetizing interactions
Am < 0 implies demagnetizing interactions (dipolar inter.)

=
1,0 —
If no interaction - CoPt NPs
m=) Am = 0 verified 05| % " diluted in C
‘I
s° 0,0- "
s "
.- = |RM
-0,54 " = DCD 7
"u, sm=DCD - (1-2 IRM) |
1,0 . — .
0,0 0,2 0,4 0,6 0,8 1,0
iH (T)
0,05
0,004
g -0,064*, o ah _ .
-§ A 4 Concentration:
o A
LA " 0.29%
0,104 4%, .
A ' ° 3% T
Aay A5% |4 ml-
-0,15 T T v T v T v
0.0 0,1 0,2 0,3 0,4 0,5

H (T)
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IRM curves simulation

How can we model these curves for a nanomagnet assembly?

g—

Negligible interactions
Framework: — Macrospin approximation (uniaxial anisotropy, extended to bi-axial...)

Random orientation of the anisotropy axes

—

Combined Stoner-Wohlfarth and Néel relaxation (switching) model



IRM modelling, analytical expression
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A certain range of orientations (symmetric around 45°)
will switch for a given applied field

b
1.0
0.8 - - v’ ForH=H,/2
. => some macrospins
E 06- - begin to switch
g ] ]
EM_ 1 v ForH=H,
1 - = all the macrospins
0.2 - 1 0.2 - 1 have switched
O-U'|'0|I'|'|'|'|'|".92|I 0.0 T T 1 T 1T T
0 10 20 30 40 50 60 70 80 90 0.0 0.2 04 0.6 0.8 1.0
¢ (degree) H/H,

The expression H,,(¢) can be inverted to determine which ¢ corresponds
to a given switching field

Then, for randomly oriented uniaxial macrospins, one can establish a simple and
compact analytical expression (independent of the particle size)
_1+42n* V1203

2(1—h?)

13 -
== |IRM(H) = mg- "1 | for He [Ha/2,Ha]  where
+X5 with h = H/H,




IRM modelling, effect of temperature

j Let us consider the case T#0

INSTITUT

Experimental parameter

» Neel switching time: 74 =10 exp(ﬁ?) / €Esw = IN(Tm /7o) ~ 25
AE(Hgw) .
=In(zm/70)

m B]
aip)
‘ ] ]

» Evolution of the energy barrier with the applied field: AE(H.@)=K )
swl’

3/2
mE) AEH,p)=K [1 - hi )] IS @ good approximation (for most orientations, a. ~ 3/2 )
SW q}

1/a
The switching field decreases with the temperature: Hsw(T) = {1 - [kf{T n(“"m)] }

m=) Shrinking of the astroid without deformation, so that T

the calculations are the same as for T=0
Simple scaling factor

(independent of angle o)

3

1 —x 1
IRM(H,T)=m Llforhe |= 1 _ ,
(5.0 Rl+x% § [2 ] where HaC(T) C(T) = st(TJ 1 strﬂ
o(T)

S5w

with & = K /(kgT)

Same analytical expression as for T=0, but with a
size dependence through the scaling factor

m=) For a given T, the smaller the particle size, the lower H,
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IRM curves simulation

S

IRM (u. a.)

Diﬁ"erer;t

» Easy computation

pa}ticle' 5nm o=1%~(
sizes of IRM curves Gaussian distrib.
l of different widths
. é - ) = 500/0
- Extension to the case o
of a size distribution
3 nm
.50 D =3 nm
7 /,/,T ] IRM(H) = / [RM(V,H)f (V) dV . . : E
. " . T r I J0 0 50 100 150
40 80 120 160
B (mT) B (mT)

Smoothing due to size distribution %) Satisfying approx. (¢=3/2, sudden switching...)

IRM (arb. unit)

K, =60 kam

Influence of 2K

(/)

)

3
K,,, = 200 kd/m

%fluence of the Y
anlsotropy constant 1K 705K/ 0.1K

temperature // 3K
5K
/ / 7K

/]

Rationalization of
the influence of
each parameter

IRM (arb. unit)

10K

8I0 120
uH (mT)

160 200 0 40 80 120 160
uH (mT)



) : : :
! IRM curves simulation and fit
. j -
uniaxial
(v Temperature
. . - . . . . . biaxial
IRM simulation taking into | v Size distribution = o
i < o 5
account the influence of v K. distribution 2 .
eff £ ‘ n
\\/ Biaxial anisotropy K, 3 v ||
= Eaanra "
g Hx
Numerical approach: )
, Ve e o 100 200 300 400 500
TRM = 2 /9 ) /V M Veos Bp(V)dV p(6. ) Aol oH (mT)
A fit of experimental IRM curves is possible!
Simultaneous fit of different measurements, in order to infer a consistent and
accurate set of parameters _ _ _
3 nm Co nanopatrticles diluted in Cu

4.0x10°

1 Ll Ll 1 1 L
1.0x10° 4 20xt0° 12610 CU < -
o (=}
3 ° 2.0x10° 4 .
8.0x10° - 1
: 0.0

= & &
E LN : IRM curve g e
5' 5.0x107 - E- E’
g ' " ;
4.0x10 -2.0x10° -
0.0 : I —— 0.0 . . . : -4.0x10° . '
0 €0 100 150 0.0 0.1 0.2 03 0.4 05 -0.50 0.25 0.00 0.25 0.50

T (K) rH(T) A (T)



IRM vs. ZFC/FC measurements

S .
. : IRM and ZFC/FC curves

Different physical processes mmp are complementary!

|Isothermal Remanent Magnetization Zero-Field Cooled/Field Cooled suscept.
(IRM) (ZFC/FC)
IRM(H): the applied field is varied ZFC(T): the temperature is varied
mmm) |\Vacrospin switching due to the mm) Thermal switching
applied field (relaxation to equilibrium)

Crucial parameter: switching field H, Crucial parameter: blocking temperature Ty
Controlled by the anisotropy field Controlled by the anisotropy energy
HA =2 Keff/(p*o MS) K= Keffv
Moderate influence of the Large influence of the size distribution

size distribution Only sensitive to the uniaxial term

Sensitive to a biaxial contribution (minimum energy barrier)



Application to Co nanoparticles

S .
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Co nanoparticles around 2.5 nm diameter
* Prepared by low energy cluster beam deposition
(laser vaporization and UHV deposition)
« Embedded in an amorphous carbon matrix
No interaction detected Triple fit: ZFC/FC + m(H) at 300 K mmm) f(D) and K
(Am = 0)
1.0 9
6.0x10 " 1 v
., IRM
05 . o° DcD
k «oam |
g 0.0 e %3.0“09_
-0.5F
* experiment
a0f . ™ a.sassamaa - simulation
’0 o Oi\)H(T;IS " e 0'00 Ts‘?K) 100 0.0 0.1 uH (T) 0.2 0.3

These parameters are then used to simulate the IRM curve
mm) Complete disagreement with the experimental IRM!



Application to Co nanoparticles
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Use of a K« distribution to fit the IRM

=) Can reflect the variety of particle shapes 8.0x10° =
g iy mngm=iseny
G108 Result not E o re
_ ", compatible with = o
E “ ZFC/FC curves! | &
< . 0 p
~ 3.0x10° - «"e0\% v
g AN 0.0 i ‘
0.0 0.2 0.3
uH (T)

" ' : v’ Consistent solution if a biaxial anisotropy

M 1
0 50 100

T (K) IS used, in addition to a K dispersion
8.0x10°
6.0x10"

E T

< " < 4.0x10°
£ 3.0x10 g

0.0 " . . : 0.0

0.0

0 50 100




Advanced anisotropy determination

=
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m (A.m?)

— =
| / | 0.0 V /& = I/
. }/\/ A & !
-1.5x10° . 0.2 . . \
: \
- - L et

A. Hillion et al., Phys. Rev. B 88, 094419 (2013).

3.0x10 ' ' ' . . v 0.4 i : .
a)

o ’ | validation ™ T/ ] “ 15K
0.0 / N\ /\ ,’ \

uH, (T)

-3.0x10° . i . ‘ . ‘ 0.4 S —— R AN | | | - ||
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 04 0.0 0.1 0.2 0.3 0.4
HOH (M }10/'/)( (T) koH, (T)
v Simulation of the low v" Anisotropy field dispersion, from p-SQUID
temperature hysteresis loop measurements on individual particles

Combined fit: exploit the fact that IRM measurements and ZFC/FC are
complementary (different types of switching processes)

mmm) Advanced characterization of the magnetic anisotropy, from
simple measurements on an assembly

IRM/DcD are simple measurements, useful to validate models,
and easier to interpret than hysteresis loops

=) No reason not to do it!



Benefits of IRM analysis, last example -
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j Fe nanoparticles embedded in carbon

m==) XMCD indicates a reduced moment per Fe atom
- 1) Magnetically dead layer, but with core Fe
WO atoms having bulk magnetic moment

Dead layer

hypotheses: —=
2) “Homogeneous disorder”, i.e. homogeneous
magnetization, reduced compared to bulk Fe

Core-Shell Homogeneous

The two possibilities would be compatible with ZFC/FC and superparamagnetic m(H) curves

=== |IRM curve can discriminate the two situations: this is not simply a “dead layer”

As-Prepared I ‘ Fe,,NPs I
1.8x10° 4x10® - 3.00x10°
T=2 K
- Fa [al 0 0 N0
1.2x10*
N‘- N,‘—..
E E 1.50x10%
< <
£
S 6.0x10°
o Data
Fit Alloy
Fit Core-Shell
0.0 0.00 1
75 100 125 150 175 200 0.0 ) 0.4 0.5
n,H(T)




General conclusion
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Many size-reduction effects on the magnetic properties

= Model samples of magnetic nanoparticle assemblies
=== Cluster deposition, dilution in a matrix = macrospin assembly

= Modelling of various magnetometry measurements is possible

=== Combined fits for an accurate determination of particle size
distribution and magnetic anisotropy

== Magnetic measurements bring qualitative and quantitative information

= Magnetism is sensitive to the particle structure, environment and
electronic configuration...

=== Indirect information and global view of a hanosystem with
complementary measurements

= Many perspectives and open questions...

(include the effect of interactions, first-principle magnetic anisotropy calculation,
dynamics, etc.)
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