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Role of fluctuations and nonlinearities on field emission nanomechanical self-oscillators
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A theoretical and experimental description of the threshold, amplitude, and stability of a self-oscillating
nanowire in a field emission configuration is presented. Two thresholds for the onset of self-oscillation are
identified, one induced by fluctuations of the electromagnetic environment and a second revealed by these
fluctuations by measuring the probability density function of the current. The ac and dc components of the
current and the phase stability are quantified. An ac to dc ratio above 100% and an Allan deviation of 1.3 × 10−5

at room temperature can be attained. Finally, it is shown that a simple nonlinear model cannot describe the
equilibrium effective potential in the self-oscillating regime due to the high amplitude of oscillations.
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I. INTRODUCTION

Research on nanoelectromechanical systems (NEMS) has
recently reached several important milestones in sensing1 and
quantum physics.2 In addition, the nonlinear properties3–6

as well as the comprehension of the dissipation mecha-
nisms of NEMS7,8 is attracting increasing interest. Although
negative intrinsic damping in NEMS, i.e., self-oscillation9

with nanoscale feedback has already been observed,10–14 an
experimental study of its nonlinear nature is still missing. The
nonlinear terms are crucial for a stable self-oscillator because
they govern the amplitude of the ac output. In fact, these terms
must contain a coefficient with the appropriate sign in order to
reach a saturation regime where a stable limit cycle can form,
otherwise the system amplitude might diverge. Moreover,
depending on the sign of these coefficients, a self-oscillating
system can be either supercritical where it is possible to pass
continuously from an immobile behavior to a self-oscillation
regime, or subcritical with an abrupt jump to a self-oscillating
state and hysteresis. A subcritical self-oscillator is usually
more nonlinear meaning a less pure output signal and more
harmonics. A supercritical self-oscillator can be tuned in
amplitude output down to zero, while a subcritical one cannot.

Subcritical self-oscillation of a field emission NEMS was
first observed in Ref. 11 in a bottom-up geometry with
nanowire resonators (NWRs). In our previous investigations
of the self-oscillation of field emission NEMS, we focused on
the description of a theoretical criterion to predict the linear
instability15 and a more detailed numerical analysis of the
nonlinear behavior in a model geometry was performed.16 In
this paper, we will compare new and extensive experimental
results with the linear and nonlinear predictions for two SiC
NWRs. The experimental setup and the direct evidence of self-
oscillation are shown in Sec. II. Section III presents in detail
the theoretical criterion that determines the self-oscillation
threshold of our system, as well as a simplified and less obscure
model. Then the method to test this model is presented, which
appears to fail to predict the threshold measured in Sec. II. This
failure comes from two reasons: (i) experimental uncertainties
to determine accurately all the physical parameters and
(ii) the existence of two thresholds in the system. This last
point is explained and experimentally confirmed by studying
ac current fluctuations in Sec. IV. Finally, we propose a basic
theoretical description of the nonlinear dynamics of our system

and use this to analyze the amplitude and phase stability of our
self-oscillator.

II. DIRECT EXPERIMENTAL DETERMINATION
OF THE THRESHOLD

The experiment takes place in an ultrahigh vacuum chamber
with a scanning electron microscope (SEM). It consists of
an NWR attached to a tungsten tip positioned with an XYZ
piezoelectric motor, in front of a metallic anode connected to
the ground [see Table I for sample sizes and Fig. 1(a) for an
SEM image of sample 1]. The tip is at a negative voltage
with respect to the ground. A Keithley 6517 electrometer
provides the dc voltage and records the dc current due to field
emission at the apex of the NWR. The emitted electrons from
the apex are attracted by the anode and generate secondary
electrons collected by the secondary electron detector (SED)
of the SEM chamber as shown in Fig. 1(d). The voltage output
of the SED is recorded on a 1-GHz bandwidth oscilloscope
(4 millions data points acquisition) so that the measurement is
only limited by the SED bandwidth (about a megahertz) and
is proportional to the total current dc plus ac. The voltage
SED is then calibrated and converted into current thanks
to the average dc current measured by the electrometer for
different value of the dc voltage. The NWR is manoeuvered
in the vicinity of the anode with a piezoelectric motor, to
find a favorable configuration for self-oscillations. In general,
it requires the NWR to be rather close to the counter
electrode (less than 10 μm) and bent by electrostatic forces as
shown in Fig. 1(b), although we observed self-oscillations
sometimes in an apparently symmetric position. Spontaneous
oscillations in the transverse direction are observed by SEM
imaging when the dc voltage is above a threshold voltage [see
Fig. 1(c)].

After the first determination of the self-oscillation condi-
tions, Idc-Vdc curves were measured with the SEM beam OFF.
In Fig. 1(e), one notices that in contrast to what we reported
in Ref. 11, the field emission dc current can reach a self-
oscillating regime without dc current jumps and hysteresis.
It is tempting to believe that a geometry with a supercritical
transition has been obtained. However, in the following, it will
be shown that the transition is still subcritical (i.e., with a
discontinuity in vibration amplitude as a function of applied
voltage). In fact, the jump in dc current becomes so small that
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TABLE I. Physical parameters extracted from various experiments.

Parameters Sample 1 Sample 2

Length 220 μm 198 μm
Radius 115 nm 160 nm
Effective mass 6.9 × 10−15 kg 1.2 × 10−14 kg
ω0/2π ∼0.25 MHz ∼35 kHz
Q 11 000 6 000
C ′ 0.15 pF/m 0.47 pF/m
RNW 2.5 G� 1.5 G�(

∂I

∂U

)−1
1.1 G� 187 G�

C 4 fF 1.3 fF
ω0RC 15 0.42
Idc at the experimental

threshold 6.2 nA 139 pA
∂I

∂x
at the experimental
threshold 310 pA/μm 83 pA/μm

Calculated Routh-Hurwitz
threshold 222.6 ± 0.19 V 278.2 ± 0.36 V

Calculated simplified threshold 222.4 ± 0.16 V 278.17 ± 0.36 V
Experimental threshold 218.75 ± 0.25 V 276.25 ± 0.25 V
Experimental PDF threshold 223.3 ± 0.77 V 278.4 ± 0.82 V

it is below the noise level. However, another more important
proof of a discontinuous response is still measurable and will
be presented below.

For each dc voltage, the SED signal is typically recorded for
0.2 s in order to have about 100 points per period and determine
the self-oscillation ac current amplitude with accuracy. In our
experiment, the time-dependent field emission total current is
measured rather than the position x(t) to study the NWR. The
field emission total current is a complex transduction of the
motion of the NWR as it depends nonlinearly on the apex
voltage as well as the NWR position. The dependence of the
current from the position comes from the field enhancement
factor. This term depends on the electrostatic geometry such
as the NWR radius, the distance between the NWR apex
and counter electrode or the tungsten tip. This geometry is
either fixed or determined by x(t), so it can be described by a
single parameter the position x(t). Below the self-oscillation
threshold, the thermomechanical noise of the NWR cannot be
detected in the SED signal because the thermal noise is too
small (see Sec. III C). However, the electrical noise has a white
component high enough to reveal the resonance in the power
spectrum density (PSD) of the total current [see Fig. 2(a)].
Figure 2(b) represents the variation of this resonant frequency
versus dc voltage corresponding to the δω term in Eq. (10)
that will be introduced in the next section. It shows that it
increases linearly with the voltage until a sudden slope sign
change. This linear dependence is expected for instance from
electrostatic tuning17,18 and in such a narrow voltage range.
The voltage, where this slope change occurs, corresponds to
the beginning of self-oscillation. Measurements are performed
with 0.5-V steps. For sample 1, the frequency increase linearly
up to 218.5 V and at 219 V, it deviates significantly from this
trend. So the self-oscillation threshold is at 218.75 ± 0.25 V
and similarly at 276.25 ± 0.25 V for sample 2.

In the self-oscillation state, the time-dependent current, in
its simplest form, is given by Itot(t) − Ī = I (t) = A cos(ωt −

FIG. 1. (Color online) (a) SEM image of sample 1 for 0 V.
(b) SEM image of sample 1 bent by electrostatic forces. (c) SEM
image of sample 1 in self-oscillation. (d) Schematic diagram of the
experimental setup. (e) Field emission Idc-Vdc curve for sample 1 with
the SEM beam OFF and a different configuration compared to (a)–(c)
(i.e., with a higher threshold voltage). The vertical line separates the
region with self-oscillation from the region without self-oscillation.

ϕ) where Itot(t) is the total field emission current, Ī is the dc
current, A is the self-oscillation (i.e., ac) current amplitude, ω

the self-oscillator angular frequency, and ϕ its phase. A(t)
and ϕ(t) are the two slowing varying degrees of freedom
compared to the period of the self-oscillator. Their dynamics
are described by two different differential equations. A(t) and
ϕ(t) can be experimentally obtained from the filtered total
current signal with the help of a Hilbert transform:19

IH (t) = I (t) ∗ 1

t
= p.v.

∫ +∞

−∞

I (τ )

t − τ
dτ, (1)

Aeiϕ = I (t) + iIH (t), (2)
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FIG. 2. (Color online) (a) PSD of the total current for sample
1 at Vdc = 213 V. The peak labeled 1 (respectively, 2) is the
first (respectively, second) mode of the NWR. (b) Self-oscillation
frequency vs dc voltage from the PSD of the total current for sample
1. (c) Amplitude Ā of the ac current vs dc applied voltage for sample
1. The arrows indicate the voltage sweep direction. (b) Ratio of the
ac current to the dc current (i.e., Ā/Ī ) vs voltage for sample 2.

where p.v. is the principal value. Figure 2(c) gives Ā the
average value of A for different voltages. The sudden increase
of Ā gives the same self-oscillation threshold as the one
from the resonant frequency. This abrupt change at 219 V
for sample 1 indicates that the transition is subcritical. This
can be noticed as well, by sweeping down the voltage while
the self-oscillation persists down to 217 V. The hysteresis is
clearly seen here while unobservable in the I -V curve. We did
not succeed to decrease the hysteresis below 1 V, and in some
cases, this bistability region (i.e., where the self-oscillation
solution and the nonoscillating solution coexist) can be higher
than 10 V. The Iac/Idc ratio increases with the voltage and as
observed in Fig. 2(d), the ac component can be bigger than the
dc one.

III. INDIRECT DETERMINATION OF THE THRESHOLD

The threshold for self-oscillation can be predicted if the
dynamical equation describing the system is found and the
physical parameters involved are measured. This analysis
can identify the most important elements in favor of self-
oscillation. The general dynamical mechanical equation was
given in Ref. 11. Its linearized version around the equilibrium
position xeq and Ū , the dc voltage difference between the apex
and the anode (by convention this voltage is taken positive), is

ẍ + ω0

Q
ẋ + ω2

0x = C ′

m∗ ŪU, (3)

where x is the apex displacement in the direction perpendicular
to the NW (x is positive when the NW approach the anode, the
sign convention is important here to determine the stability),
C ′ is the spatial derivative in the x direction of the capacitance
C, m∗ is the effective mass of the NW, U is the ac voltage, Q

is the quality factor, and ω0/2π is the resonance frequency.
The mechanical equation is coupled to a linearized electri-

cal equation, obtained from Kirchhoff’s law:(
∂I

∂U
+ 1

RNW

)
U + CU̇ = −∂I

∂x
x − C ′Ū ẋ, (4)

where I is the field emission ac current and RNW is the
nanowire resistance.

A. The Routh-Hurwitz criterion

Inserting Eqs. (4) in Eq. (3), we get

C
...
x + ẍ

(
∂I

∂U
+ 1

RNW
+ C

ω0

Q

)

+ ẋ

[
C ′2Ū 2

m∗ +
(

∂I

∂U
+ 1

RNW

)
ω0

Q
+ Cω2

0

]

+ x

[
C ′Ū
m∗

∂I

∂x
+

(
∂I

∂U
+ 1

RNW

)
ω2

0

]
= 0. (5)

The stability of this dynamical system can be checked with the
Routh-Hurwitz criterion (see Ref. 20, p. 219), which says that a
differential equation of the form a

...
x + bẍ + cẋ + dx = 0 has

only negative eigenvalues real part if and only if a > 0,b >

0,d > 0, and bc − ad > 0. So for our system, self-oscillation
begins when the following Routh-Hurwitz expression (RHE)
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becomes positive:

C

[
C ′Ū
m∗

∂I

∂x
+

(
∂I

∂U
+ 1

RNW

)
ω2

0

]

−
(

∂I

∂U
+ 1

RNW
+ Cω0

Q

)

×
[
C ′2Ū 2

m∗ +
(

∂I

∂U
+ 1

RNW

)
ω0

Q
+ Cω2

0

]
� 0. (6)

To fulfill this criterion, we showed in Refs. 15 and 16 that it is
easier but not absolutely necessary to first have

∂I

∂U
∼ 1

RNW
(7)

and second,

ω0C

/ (
∂I

∂U
+ 1

RNW

)
= ω0RC ∼ 1, (8)

where R is the equivalent resistance of the two parallel
resistances of the circuit, i.e., the field emission resistance
and the nanowire resistance.

B. Simplified model

A drawback of the Routh-Hurwitz criterion is that it
obscures the physical origin of the self-oscillation regime.
A less rigorous criterion can be obtained by simply looking
for a stationary solution x(t) = X cos(ω0t), where X is the
amplitude of self-oscillation. By inserting this solution into
the electrical equation (4), the voltage can be expressed as a
function of x and ẋ = −Xω0 sin(ω0t):

U = −R ∂I
∂x

− C ′R2Cω2
0Ū

1 + (RCω0)2
x + −RC ′Ū + R2C ∂I

∂x

1 + (RCω0)2
ẋ. (9)

Then this expression can be used to replace U in Eq. (3) to
obtain

ẍ + γ ẋ + (
ω2

0 + δω2)x = 0,
(10)

γ = ω0

Q
− Ū


(
RC

∂I

∂x
− C ′Ū

)
,

where δω2 is the frequency tuning due to the electromechanical
coupling γ is the effective damping and 
 = RC ′

m∗[1+(RCω0)2] .
Self-oscillation will take place if the damping goes to zero. It
requires first that the term with the spatial derivative of the ac
current is higher than the term with C ′ (the so-called electro-
static damping).21 The first term increases exponentially with
voltage, as long as the field emission resistance is not too small
compared to the RNW, while the term with C ′ increase roughly
linearly. So, if the NWR supports the necessary dc current, the
first term can dominate. If this condition is fulfilled then by
increasing the dc voltage, self-oscillation should occur above a
certain threshold. As well, close to the threshold the damping
should change linearly with voltage. With these notations the
RHE can be rewritten as

ω0

Q

[
1 + RCω0

Q

1

1 + (RCω0)2

]

− Ū


[
RC

∂I

∂x
− C ′Ū

(
1 + RCω0

Q

)]
� 0. (11)

So the RHE essentially differs from the simplified model by
two terms that are negligible as long as the relation (8) is
verified and Q is high.

C. Comparison between the model and the experiment

In principle, the Routh-Hurwitz criterion should give the
value of the threshold for self-oscillation. However, this
voltage is very sensitive to the values of some parameters
(see below) and measuring the corresponding experimental
parameters with a high accuracy is not always possible due
to their dc voltage dependence and the instability of the field
emission dc current. It turns out that it is illusive to try to
make an accurate prediction of the threshold due to these
experimental uncertainties. More importantly, as it will be
explained in the next section, more accurate measurements
of the experimental parameters could not even predict the
threshold measured in Sec. II. Nevertheless, we succeeded
in obtaining reasonable experimental estimates of all the
physical parameters; compared to our first studies,11 this time
mostly all values are measured and not simply guessed from
somewhat questionable theoretical considerations. Moreover,
the model has been qualitatively confirm by varying some
experimental parameters and comparing the expected and
measured variation in the threshold. Some aspects of the model
will also be tested in the next section. We need to measure
m ∗ ,ω0,Q,RNW, ∂I

∂U
,C,C ′,Ū , ∂I

∂x
.

Table I sums up the experimental parameters used to
calculate the Routh-Hurwitz criterion for the two samples.
We estimate the effective mass from the dimensions of the
samples from SEM images (see Fig. 1 for sample 1) the SiC
density (3200 kg/m3) and first mode correction coefficient
of 0.25.4,22 The resonant frequency obtained from Fig. 2(b)
near the self-oscillation experimental threshold gives ω0. Q is
obtained from the measurement in spot mode in a SEM from
the mechanical resonance peak width. This measurement is
performed at low voltage in order to reduce the electrostatic
damping (see Ref. 21 for details). The resonant frequency of
the first mode for different voltages gives the voltage dependent
effective rigidity. The resonant frequency at zero voltage is
in reasonable agreement with the geometry and the expected
Young modulus. Next, the voltage dependence of C ′ is deduced
from the rigidity and the SEM imaging of the nanowire bending
with the voltage. Finally, we deduce the resistance RNW from
the increase of the resonance width at high voltage measured
not too close to the self-oscillation experimental threshold.
IdcVdc data are then replotted versus Ū = Vdc + RNWĪ to get
Ī (Ū ) and ∂I

∂U
after numerical derivation. In the range of voltage

of our experiments ∂I
∂U

appears to be rather constant. The
capacitance C is obtained by applying a voltage step at the
counter electrode and by measuring the characteristic time
RC of the field emission total current transient with the SED.

∂I/∂x is the most important parameter in the damping
canceling mechanism and self-oscillation. A first approach to
measure this parameter is by oscillating the piezo actuator
with a low-frequency ac voltage during field emission and
measuring with a lock-in the SED signal. The motion of the
piezo actuator is then calibrated with the SEM. However, this
measurement probably underestimates the actual value of this
parameter as this procedure doesn’t reproduce properly the
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direction of motion nor the amplitude. It gives a ∂I/∂x of
several pA/μm at 1 nA, with such a value self-oscillations are
impossible according to the model. A significantly higher value
of ∂I/∂x during oscillation is necessary to get a reasonable
agreement with the experiment. A better estimate of ∂I/∂x

consists in imaging the self-oscillation amplitude with the
SEM as well as measuring the ac current. ∂I/∂x is obtained
by dividing the amplitude of oscillation by the ac current. This
gives a proper order of magnitude to calculate a threshold
coherent with what will be measured in the next section.
However, due to some uncertainties in the image analysis, the
amplitude can not be estimated with an accuracy better than
20%, which corresponds to a change in the threshold value by
several volts, so this method cannot be considered as reliable
to precisely predict the threshold. Moreover, this measurement
can be performed only in a narrow range of voltage: for a
voltage above the onset of self-oscillation but for a voltage low
enough so that the field emission secondary electrons current
is lower than the SEM secondary electrons current (otherwise,
the SEM image is saturated and appears white). In between,
the field emission current from the nanowire and the electron
beam current are comparable and both contribute to the signal
in the SED. The presence of this additional current from field
emission is responsible for the noise in the image and the
deterioration of the image analysis accuracy. Theoretically,
∂I/∂x increases quasilinearly with the dc current due to the
exponential dependence of the Fowler Nordheim (FN) dc
current, so we measured it only for a fixed dc current and
then included this dependence in the formula.

From this measurement, the amplitude of the expected
thermomechanical noise (xth) at the resonance mentioned in
Sec. II can be calculated by

√
SIxth(f0) =

√
4kbT Q

mω3
0

∂IFN

∂x
. (12)

For the experimental condition of Fig. 2(a),
√

SIxth(f0) =
18 fA/

√
Hz, whereas the experimental peak is at

1.6 pA/
√

Hz. So the origin of the resonant peak is not
the thermomechanical noise. As the nanowire is actuated
electrostatically a voltage white noise can induce a peak in the
PSD at the resonant frequency. Theoretically, for our sample,
the voltage noise due to the field emission shot noise dominates
the Johnson noise from the nanowire resistance and gives a
peak of amplitude:√

SIxshot(f0) =
√

2eĪRNW
C ′U

2

Q

mω2
0

∂IFN

∂x
= 211f A/

√
Hz.

(13)

This value is still an order of magnitude lower than the
experimental peak indicating that another source of white
noise, which we could not identify is responsible for this peak.
Observing the thermomechanical noise would require a better
quality factor or lower nanowire resistance.

From Table I, it appears that relation (7) is well verified
for sample 1 and not for sample 2. For this last sample, this
indicates that self-oscillation is possible even for low voltage
drop along the NWR and that less power is dissipated by Joule
heating. We also checked the validity of the relation (8) for
ω0RC at different resistances values on the same sample. To
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FIG. 3. (Color online) (a) Calculated damping from Eq. (10) vs
voltage for sample 1. (b) RHE vs voltage for sample 1. Increasing
the dc voltage allows to fulfill the Routh-Hurwitz criterion and
makes expression (6) positive. The solid lines are a linear plot of
the calculated points.

achieve that, we lowered, step by step, the resistance of sample
1 by annealing the nanowire at increasing temperature. Before
the first annealing, the pristine resistance was about 20 G� and
self-oscillation took place at the first mode frequency, 20 kHz.
Table I shows a case at lower resistance value where it was
the second mode at higher frequency and not the fundamental
that self-oscillates because ω0RC was then closer to 1. In this
case, ω0RC =15 instead of 100 for the first mode. So our
measurements confirm qualitatively the expected dependence
of the self-oscillation threshold on the physical parameters.

Figure 3(b) shows the RHE calculated with Eq. (6) and
the experimental parameters of Table I versus the applied
dc voltage for sample 1. All these parameters are voltage
independent, except ( ∂I

∂U
) and Ū that are calculated from

experimental data as explained above for each voltage and
( ∂I
∂x

) that has been measured for one voltage only and then
extrapolated thanks to the Fowler-Nordheim expression. The
RHE increases linearly and changes sign for a certain voltage
that we call the Routh-Hurwitz threshold listed in Table I.
The voltage uncertainty presented on the tables includes only
the scattering on the available data and essentially the noise on
( ∂I
∂U

). These do not include the noise of ( ∂I
∂x

) as it was measured
for only one voltage. This threshold agrees very well with the
threshold from the simplified model, confirming that close
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to the transition the two coupled electrical and mechanical
equations can be replaced by the equivalent resonator of
Eq. (10). The damping γ /2π given by the simplified model
[see Fig. 3(a)] is less than 10 Hz and roughly agrees with the
data from the PSD of the total current. In the PSD, the duration
of the signal limits the resolution to 5 Hz and the signal to noise
ratio allows just to say that the width of the peak is equal or
smaller than approximately 10 Hz. However, increasing the
duration of the signal couldn’t improve the resolution as will
be explained in Sec. IV E. The calculated thresholds are higher
than the one obtained from the amplitude of self-oscillation
and this apparent discrepancy would remain even with more
accurate measurements. It comes from the fact that our model
doesn’t takes into account fluctuations and nonlinearities. The
next section will explain the reason of the existence of two
thresholds.

IV. STUDY OF FLUCTUATIONS AND NONLINEARITIES
IN THE CURRENT

As explained in the introduction, self-oscillations are pos-
sible thanks to nonlinearities in the dynamics to compensate
the sign of the negative linear damping at high amplitude.
Furthermore, the presence of hysteresis as observed in Fig. 2(c)
is a clear evidence of nonlinear effects and indicates that the
linear model presented in the previous section will miss some
aspect of the underlying physics. In this section, we will study
the nonlinear dynamic of our NWR in the bistable regime and
the self-oscillating state by measuring current fluctuations.

A. Current fluctuations in the bistability regime

The NWR fluctuations can be studied by analyzing the time
dependence of the field emission total current for a fixed dc
applied voltage. From this time-dependent data, the current
probability density function (PDF) can be extracted. Indepen-
dently, after an Hilbert transform, the amplitude A(t) and phase
ϕ(t) of the self-oscillator can be obtained. The phase data will
be presented at the end of this section. The time average of
A(t) has already been presented in Fig. 2(c) and its fluctuations
are connected to current fluctuations. So we will first focus
on current fluctuations and its PDF. The PDF is a statistical
tool representing an histogram of the different values taken
by a random variable. Its shape provides information about
fluctuations and probes the dynamical equation governing the
system. Roughly speaking, in our case, electronic fluctuations
cause field emission total current to wander away from the
equilibrium position while other terms in the dynamical
equation maintain this variable in its vicinity and damps
this motion as stated by the fluctuation dissipation theorem.
The next section will give more theoretical details about the
connection between the PDF and the dynamics of the system.

Figure 4(a) represents the PDF of the ac current for sample
2 (the same measurements has been performed for sample 1),
filtered around the resonance peak in the PSD, for different
dc voltage when the system is not self-oscillating. The PDF
is the Gaussian and can be fitted by the following function
exp(−BI 2). B decreases linearly when approaching the
experimental threshold as plotted in Fig. 4(b). The data points
include the measurements from the ramping up and down of
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FIG. 4. (Color online) (a) Semilogarithmic plot of the probability
density function (PDF) of the ac component of the field emission
current for different dc voltages for sample 2 below the self-oscillation
experimental threshold. The solid lines are a fit of the data points
with a Gaussian. The width increases as the experimental threshold
is approached. (b) Term proportional to the linear damping of the
oscillator for different dc voltage applied to sample 1. The solid line
is a linear fit. (c) Semilogarithmic plot of the PDF of the ac component
of the field emission current for different dc voltages for sample 1
below and above the experimental threshold. The solid lines are a fit of
the data points with a Gaussian below the experimental threshold and
with Eq. (24) above the experimental threshold. (d) Semilogarithmic
plot of the PDF of the ac component of the field emission current
for Vdc = 218.5 V for sample 1. The Gaussian fit in solid line is not
satisfying for this voltage.
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the voltage. The voltage where B cancels is 223.3 ± 0.77 V ,
as given by a linear fit of Fig. 4(b). We reported this voltage
as the PDF threshold in Table I. This term will be justified in
the next sections. The voltage uncertainty is also given by the
fit. This voltage is an extrapolation of the data as, once the
experimental threshold is crossed (i.e., in the self-oscillating
regime), the PDF is no longer Gaussian. The PDF threshold is
significantly different than the experimental threshold. In the
self-oscillating state, i.e., above the experimental threshold,
the PDF has a totally different shape with two peaks as shown
on Fig. 4(c).

B. Existence of two thresholds in the bistability regime

To interpret the shape of the PDF, the simplified linear
model described by Eq. (10) needs to be extended. We will
focus on the dynamical behavior of the ac amplitude of the
field emission current because it is the total current that is
measured with the SED and not the position x(t). Deducing
an equation for the ac current from the dynamical voltage
and position equations is rather tedious due to the number
of possible nonlinear terms. A simple phenomenological
nonlinear equation for the time-dependent ac current defined
in Sec. II as I (t) = Itot(t) − Ī is

Ï +
(

ω

Q
− f (I )

)
İ + ω2I = η(t), (14)

where η(t) is due to the fluctuations (thermal, shot noise, etc.),
f (I ) is responsible for the change of sign of the dissipation
and the self-oscillation behavior as well as for the saturation
of the ac current due to nonlinear dissipative terms.

In the non-self-oscillating state, the distribution of ac
current due to fluctuations is obtained from the stationary
solution of the corresponding Kramers equation.23 If the
zero-order term in f (I ) is only considered for the moment
and if the fluctuations spectrum is white and constant, the
distribution is Boltzmannian of the form exp[−(meffω

2I 2 +
meff İ

2)/2kBTeff], where meff is an effective mass, kB is the
Boltzmann constant, and Teff is the effective temperature in
our case larger than the room temperature due to electronic
noise. As only the fluctuations in I and not in İ are measured,
this distribution can be integrated over İ to get the ac current
distribution. So, the distribution of I , P (I ), i.e., the PDF of I ,
is Gaussian, to first order in the non-self-oscillating state:

P (I ) = P0 exp

(
− meffω

2

2kBTeff
I 2

)
. (15)

It can be seen, from this expression that − ln (P (I )) is a
measure of the potential (here parabolic) felts by the dynamical
degree of freedom I .

According to the linear models of Sec. III, for a certain
voltage V ∗, the linear damping should cancel and the zeroth-
order term in f (I ) should be of the form ω0/Q + α(V dc − V ∗)
with α > 0. Hence, in the bistable region and in the self-
oscillating state, higher-order terms in f (I ) will start to play
a role. To illustrate, we used the simplest form of f (I ) in
the subcritical case, where a and b are supposed constant and
positive:

Ï + [−α(V dc − V ∗) + 4aI 2 − 8bI 4]İ + ω2I = η(t). (16)

In these regimes, the amplitude A(t) of the self-oscillator and
its phase, defined as before as I (t) = A cos(ωt − ϕ), where
A > 0 and ϕ is a real number, are more suitable to study
the dynamic of the system. So this expression is inserted into
Eq. (16). Then the method to solve this equation is based on
a two time scales approach. A fast time scale of the oscillator
related to 2π/ω0 and a slower time scale related to the time
evolution of the amplitude and phase. After separation of
the cosine and sine terms, we obtain dynamical equations
reformulated in the rotating frame:24

2ω
∂A

∂t
= ωA[α(V dc − V ∗) + aA2 − bA4] + η⊥(t)

= Feff(A) + η⊥(t), (17)

2ωA
∂ϕ

∂t
= η‖(t), (18)

where we defined Feff as the effective force applied on an
equivalent overdamped particle at the position A(t) and

η(t) = η‖(t) cos(ωt − ϕ(t)) − η⊥(t) sin(ωt − ϕ(t)). (19)

A duffing term was not included in Eq. (16) as it will only
influence the phase and not the amplitude of self-oscillation
and can be considered as a simple shift of the frequency of
oscillation. The stationary solutions of this system show that
the phase can take any value and in the bistable regime, there
are three equilibrium amplitudes: two stable Ā = 0 and As

given by

A2
s = a

2b
+

√(
a

2b

)2

+ α(V dc − V ∗)

b
(20)

and one unstable Au:

A2
u = a

2b
−

√(
a

2b

)2

+ α(V dc − V ∗)

b
(21)

with 0 < Au < As . For a voltage higher than what we will
call the linear threshold V ∗ (i.e., the voltage where the linear
damping cancels), Au and Ā = 0 merge into one unstable
position. So, in a subcritical self-oscillation transition, close
to the linear threshold, several equilibrium positions coexist
for a given range of the control parameter. In our experiment,
the control parameter is the dc voltage. Figure 5 represents
the different values of Ā for different values of the control
parameter with the typical shape of the effective potential
acting on the equivalent particulars in the rotating frame. For
low voltage, this system is in a parabolic potential and it is
not self-oscillating. In the multistability region, the system
state can jump from one equilibrium position to another,
for instance from a non-self-oscillation state where Ā = 0
to a self-oscillating one, with the help of fluctuations to
overcome the barrier between this states. In particular, the
non-self-oscillating state should be stable till V ∗, as predicted
by a linear model, but fluctuations let the system jump to a
self-oscillating, more stable state (i.e., with a larger activation
barrier) at Vexp1 < V ∗. So two thresholds can be defined for the
system: Vexp1 where the NWR jumps into self-oscillation and
V ∗ where the NWR would jump in the absence of fluctuations.
Once in the self-oscillation state, it can remain in this state till
a voltage Vexp2 < Vexp1.
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FIG. 5. ( Color online) Diagram of the equilibrium amplitude Ā

as function of the control parameter V dc. The solid lines represent
the stable position and the dashed line the unstable one. The
effective potentials acting on the equivalent particles are represented
for different regimes. The different thresholds are defined on the
horizontal axes. Vertical arrows indicate the transition from one stable
state to another.

Now, the PDF of A can be obtained from the corresponding
Fokker Planck equation23

∂W

∂t
= D

∂2W

∂A2
− 1

2ω

∂

∂A
(WFeff), (22)

where W (A,t) is the probability for the self-oscillator to have
an amplitude A at the time t , D is the diffusion coefficient
related to the noise η. The PDF of A, W̄ (A), is the stationary
solution of the Fokker Planck equation:

W̄ (A) = W̄0 exp(−a0(Vdc − V ∗)A2 + a1A
4 − a2A

6)

≈ W̄s exp(−β(A − Ā)2), (23)

where a0, a1, and a2 are related to α, a, and b, W̄0 and W̄s

are some prefactors. W has been expanded around Ā the
amplitude of self-oscillation. The predicted distribution of A

is also a Gaussian to first order. β is a parameter that depends
on the previous coefficients and is related to the inverse of the
Gaussian width of the distribution. The relationship between
the PDF of I and the PDF of A is given by

P (I ) =
∫

P (I,A)W̄ (A)dA, (24)

P (I,A) = 1

π

1√
A2 − I 2

, (25)

where P (I,A) is the usual probability density of finding an
oscillator at the “position” I when its motion is a cosine with
an amplitude A.

C. Analysis of the PDF in the bistability regime

Experimentally, Vexp1 corresponds to the voltage where
the average ac current amplitude Ā jumps for a voltage
up-sweep in Fig. 2(c) (reported as the experimental threshold
in Table I) as well as the voltage where the shape of P(I)
changes abruptly in Fig. 4(c). Similarly, Vexp2 corresponds
to the abrupt change for a voltage down sweep. From the
previous model, the Gaussian shape of the PDF in absence
of self-oscillation has been justified and B can be identified

to meffω
2/2kBTeff . According to the fluctuation dissipation

theorem, the fluctuations are equal to the product of the
dissipation by the effective temperature. Then the effective
temperature is inversely proportional to the dissipation. As
the dissipation comes from the damping term in Eq. (14), B

is proportional to the linear damping. As expected, Fig. 4(b)
shows that the damping is decreasing when approaching the
self-oscillation linear threshold. This measurement confirms
the linear dependence of the linear damping close to self-
oscillation transition predicted by the RHE and the simplified
model (see Fig. 3). So, although the experimental measure-
ments based on the simplified linear model and the RHE can
not predict the exact linear threshold because of fluctuations, a
signature of this predicted voltage where the damping cancels
is detectable in the total current fluctuations with no adjustable
parameters. The PDF threshold is an accurate experimental
measurement of the linear threshold V ∗.

Close to this threshold, a departure from a Gaussian fit
starts to be visible in the PDF due to a higher order term [see
Fig. 4(d)]. Though too few data points in voltage were taken to
determine whether this term is constant or not. Theoretically,
we could observe this nonlinear term for lower voltages but
it would require an acquisition time incompatible with the
field emission total current stability and the 1/f noise because
for lower voltage, the damping is higher, so the parabola
coefficient is stronger and high amplitude fluctuations that
can sense a higher-order term become less probable.

It appears in this section that measuring the PDF gives
the value of the experimental threshold Vexp1 as well as the
Routh-Hurwitz (or linear) threshold V ∗: Vexp1 is obtained when
the PDF shape changes abruptly whereas V ∗ is deduced by
extrapolating B to the voltage where it cancels (i.e., the PDF
threshold). The PDF is a more powerful tool to study self-
oscillations than for instance the PSD. This comes from the
fact that (i) for the same temporal measurement of the total
current, the resolution of the resonance peak in the PSD is
insufficient to extract the evolution of the damping as stated
in Sec. III C, and (ii) the PDF rely only on the ac current
amplitude and so is insensitive to the phase noise contrary to
the PSD.

D. Amplitude of current in the self-oscillating regime

Equation (24) gives the typical shape of the PDF of I

with its two peaks as observed in Fig. 4(c) above threshold.
It is remarkable that the form of the PDF is very different
for a self-oscillator compared to a noise driven resonator,
whereas the peak in a PSD is Lorentzian above or below the
self-oscillation threshold. The shape of the PDF of I and the
dependence of the ac amplitude with the voltage is roughly
what is expected for such a simplified model. In contrast, the
dependence of its fluctuations during self-oscillation is rather
unexpected. This dependence is obtained by fitting the PDF
of the ac current above threshold with Eqs. (23) and (24) and
extracting β as plotted in Fig. 6. It appears that β is insensitive
to the voltage while the existence of the a0(Vdc − V ∗) term
in W̄ (A) should induce a dependence. We conclude that
the nonlinear behavior of the self-oscillator controlling the
saturation as well as the span of the hysteresis region cannot
be described by our simplified first-order nonlinear model
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FIG. 6. (Color online) Dependence of β on voltage for sample
1 (square: upward voltage sweeping, circle: downward voltage
sweeping.

probably because of the high amplitude of the ac current
and vibration or because the terms a and b have a voltage
dependence.

E. Phase of the self-oscillator

The phase is the parameter that determines the stability of
a self-oscillator for its use as a time base. The Allan deviation
is used to quantify this stability as it quantifies the stability on
different time scales. We computed this Allan deviation from
the argument of the Hilbert transform (i.e., the phase ϕ of the
ac current):

σ (τ ) =
√

1

2

∑
i

1

N − 1
(〈ϕ̇(ti)〉τ − 〈ϕ̇(ti+1)〉τ )2〉/〈ϕ̇〉, (26)

where the ti are different times separated by a time τ and
the notation 〈〉τ means a time average during a time τ

around ti . The minimum of the Allan deviation is generally
above 10 ms for both samples. Figure 7(a) shows a typical
Allan plot for sample 1. Due to the instability of the field
emission process and the 1/f noise observed in the PSD
of the emission total current, the Allan deviation increases
for times above several tens of ms. This long-term phase
drift will make the width of the resonance peak in the
PSD larger for longer duration of the signal although the
frequency resolution of the Fourier transform will increase.
That is why, the determination of the intrinsic damping of
the resonator from the PSD is limited even for long recording
time. Figure 7(b) plots the minimum of the Allan deviation
of sample 1 for each dc voltage. Our best Allan deviation
is 1.3 × 10−5 and the smallest value appears close to the
self-oscillation threshold (i.e., for the lowest amplitude of
oscillation). This value is roughly 10 to 50 times worse than
what is observed in self-oscillating NEMS with external feed-
back (for instance the allan deviation in Ref. 1 is 2 × 10−6 for
carbon nanotubes). However, our measurements are performed
at room temperature, while in the literature the Allan deviation
in NEMS is usually given at cryogenic temperature. Our
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FIG. 7. (Color online) (a) Allan deviation for sample 1 for a dc
voltage of 217.5 V in the bistability region. (b) Minimum of the Allan
deviation for sample 1 vs dc voltage.

samples might well reach the state of the art of NEMS if
the measurements were made at a lower temperature.

V. CONCLUSION

In this paper, we performed an experimental and theoretical
study of a self-oscillating field emission NEMS with intrinsic
feedback and measured numerous physical parameters con-
trolling the phenomenon. A simple linear model was shown
to predict qualitatively the cancellation of the damping close
to the self-oscillation threshold. We demonstrated that the
amplitude of self-oscillation is quite large and comparable to
the dc signal flowing through the circuit. Although hysteresis
in the I -V characteristics can be removed, the system
remains intrinsically subcritical with abrupt jumps in the
self-oscillation amplitude. The PDF of the ac current has
been used to demonstrate the coexistence of two thresholds
in the system. One related to the cancellation of the linear
damping and a lower one depending on the noise amplitude.
The PDF is more useful than the PSD to study self-oscillation
thresholds. The stability of the oscillator is reasonable for a
NEMS but remains too low for practical purposes. Due to
the high amplitude of vibration, the nonlinear dynamics of
the system cannot be described by a simple model and would
require a deeper theoretical analysis. This work opens the door
for the study of the synchronization of such highly nonlinear
self-oscillators.
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