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a b s t r a c t

We simulate the nonlinear behaviour of a cantilevered nanowire in field emission to understand and

exploit the self-oscillations experimentally observed in this nanoelectromechanical system. Statics and

dynamics of this oscillator are predicted with a low-dimensional model consisting of a bi-articulated

cantilevered beam flowing electrons and immersed in an electrostatic environment. We set up the

qualitative nonlinear governing equations of the system and also highlight the original coupling

between the electrostatic field, the nanowire motion and the electric field emission current. A linear

stability analysis of the nonlinear static fixed points aims at determining the instability threshold as a

function of the applied DC voltage. It is found that instability is mostly due to the competition between

the field emission current dependence on the nanowire position and the voltage. As a consequence, the

emergence of flutter requires specific external conditions such as an initial angular imperfection, a

strong mechanical Q factor or a high electrical resistance. Finally, a direct integration of the nonlinear

governing equations confirms the presence of high-frequency self-oscillations, i.e. the possibility of DC/

AC conversion in this autonomous electromechanical device.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nanoelectromechanical systems (NEMS) based on mechanical
resonances of nanostructures, such as nanotubes or nanowires,
are drawing interest from both technical and scientific
communities [1]. Their extremely small dimensions make them
highly sensitive to external electrostatic perturbations and, due to
their outstanding mechanical properties such as strong Young’s
modulus or high quality factor Q [2] their mechanical response
can exceed the quality of electrical signals from purely electronic
devices. As well, NEMS oscillators have been proposed for use in
ultrasensible mass detection [3] or radio frequency for wireless
communication [4].

Among the great variety of these nanocomponents, NEMS
based on singly clamped cantilevers in field emission (FE)
configuration have recently proven original capabilities [5]. In
this FE configuration, a nanotube or nanowire is connected to the
cathode and a DC voltage V is applied between the cathode and an
anode positioned in the vicinity of the nanostructure (Fig. 1). For a
voltage Uref, the electric field at the nanowire apex, enhanced by
its tip effect, becomes sufficient to extract electrons by tunnelling
effect. This quantum process results in a field emission DC current
depending on the applied voltage V [6].
ll rights reserved.
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One of the originalities when using cantilevered nanostruc-
tures as field emitters is that their extreme mechanical sensitivity
reveals dependence of the FE current on the position of the
emitter. The new NEMS applications in this configuration take
advantage of this original coupling between the emitted current
and the position of the emitter apex in its environment. One can
also mention that this configuration is well adapted for mechan-
ical studies on nanotubes and nanowires, as the resulting patterns
of the emitted electrons give a direct projection of the apex
motion on a phosphor screen (Fig. 1). This allows investigations of
linear and nonlinear behaviour of nanocantilevers [7,8].

A particularly interesting application recently shown by
Ayari et al. [9], using highly resistive nanowires, has been
the observation of self-oscillations resulting from the electro-
mechanical interactions between the electrical and mechanical
properties of the cantilever. They showed that above a critical
DC voltage, the nanostructure starts to oscillate resulting in an AC
field emission current. The realization of an AC current generator
at the nanoscale simply commanded by a DC voltage has
interesting potentialities in autonomous nanosystems such as
smart dust applications. From a theoretical point of view, this
system exemplifies an original coupling that appears at the
nanoscale between mechanical behaviour, electrostatic environ-
ment and FE properties.

The present paper proposes nonlinear simulations to predict
nonlinear statics and dynamics of a nanowire in field emission.
Inspired by the fluid–structure interaction formalism for model-
ling the instability of slender structures in axial flow [10,11],
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Nomenclature

Kinematics

D diameter of the nanowire
L length of the nanowire
q1, q2 absolute angular displacements
y1, y2 angular displacements around the tilting position
c initial angular tilting of the nanowire

Electrostatics

C, c electrical capacitance and its dimensionless form
Cref electrical capacitance when q1 = q2 = 0
E, e electric field and its dimensionless form
F electrostatic force applied on the nanowire
M1A, M2A, M2B moments of the electrostatic forces about the

two articulations A and B

m1A, m2A, m2B dimensionless forms of the electrostatic mo-
ments

U, u electric potential and its dimensionless form
S boundary of the electrostatic problem
b, b field enhancement factor and its dimensionless form
bref field enhancement factor when q1 = q2 = 0

Mechanics

ak rotational stiffness ratio of the interconnected
springs

m viscous damping of the interconnected dampers
kA, kB rotational stiffnesses of the interconnected springs
m nanowire mass per unit length
Q dimensionless mechanical quality factor
t dimensionless time scale
j

1
, j

2
shapes of the first and second mechanical mode

o reference frequency of the oscillating nanowire

Electricity

Ic capacitor current
Ie, ie field emission current and its dimensionless form
H, G, h, g Fowler–Nordheim empirical constants and dimen-

sionless forms
R nanowire electrical resistance
r ratio between electrical and mechanical time scales
U, u voltage at the nanowire tip and its dimensionless

form
V, v applied DC voltage and its dimensionless form
Uref field emission voltage reference
j

3
electrical mode shape
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we describe a discrete model to understand and also make the
most of the physical phenomena involved in this original
nanoelectromechanical system. Based on the first investigations
by Ayari et al. [9], we extend their model to a rigorous geo-
metrically nonlinear one with richer kinematics. The electrostatic
problem, the mechanical behaviour and the field emission
influence are successively discussed. This work provides a first
Fig. 1. Experimental settings: nanowire in field emission.
qualitative model of a cantilevered nanowire in field emission but
can also be extended to the modelling of vibrating nanostructures
so far mainly based on linear beam theory [12].

In Section 2, we set up the general governing equations of a bi-
articulated nanowire in field emission, which is expected to be a
suitable low-dimensional model to compute qualitative results.
The electrostatic environment of the nanostructure governs the
applied electrostatic forces and some essential electrical proper-
ties respectively required to set up the coupled mechanical and
electrical models. The complete dimensionless nonlinear
formulation of the discrete system is given at the end of the
section. We then specify, in Section 3, the parameters of the
model related to the physical problem for further computations.
The chosen kinematics leading to a low-dimensional governing
equation, many discrete electromechanical parameters are deter-
mined through experimental observations of the continuous
system. The remaining unknown quantities are obtained by
computing the electrostatic problem. In Section 4, we perform
the numerical simulation of a nanowire in field emission. We
confirm the possibility of self-oscillations around the system
static equilibrium. An explanation of the physical phenomenon
responsible for the instability is suggested in Appendix A.
A parametric study of the NEMS linear stability allows us
determining the electrical and mechanical parameters leading to
self-oscillations. Finally, implicit time integration is performed to
simulate the limit cycles and the output AC signal of the
nanodevice at the instability threshold.
2. Fully nonlinear model of a nanowire in field emission

In order to set up the governing equations of the nanowire in
field emission, one needs first to sort out the strong connections
between the different physical problems contained in the system,
i.e. the electrostatic, the mechanical and the electrical ones. In the
following, after choosing an appropriate kinematics, we show
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how to compute the electrostatic problem giving us the required
variables to study further the dynamics of our nanoemitter.
Indeed, once this done, the nanowire motion and its electrical
equilibrium are completely defined at any instant t and the
dimensionless governing equations of the electromechanical
system can then be given.

2.1. Kinematics

The diagram in Fig. 2a illustrates the kinematics chosen to
model the dynamical behaviour of a cantilevered nanowire with
length L and diameter D in the field emission setup presented in
Fig. 1. The geometrical configuration of the oscillating nanowire is
described at any instant t by two generalized coordinates q1 and
q2 such that

q1ðtÞ ¼ y1ðtÞþc;

q2ðtÞ ¼ y2ðtÞþc; ð1Þ

where the constant c is the initial angle made by the nanowire
with the z-axis considered as the symmetrical FE configuration.
Indeed, nanowires being electrostatically glued on the tungsten
tip, their initial positions are generally not symmetrical [7].

Note that simulations of articulated models have been widely
used as an aid in the study of their continuous flexible counter-
parts in the field of dynamics [10]. In accordance with the physical
problem and the purpose of the paper, this two degrees-of-
freedom model is expected to be sufficient to capture the essential
dynamical features of the continuous system (geometrical non-
linearities, instability mechanism, self-oscillations). Furthermore,
since most of the methods for analysing nonlinear systems are
practicable only for low-dimensional systems, we follow the
tendency to study a simplified discretization of the continuous
system.

2.2. Electrostatic model

In the field emission configuration (Fig. 1), the applied DC

voltage V leads to an electrical potential difference U between the
nanowire and the Ultra High Vacuum environment. Thereby,
external electrostatic forces will act on the two segments of our
bi-articulated nanostructure which behaves as one armature of a
capacitor. According to the FE configuration (dimensions involved,
Ultra High Vacuum chamber experiments), we consider that
electrostatic interactions are an order of magnitude larger than
other physical phenomena such as gravitational or Van der Waals
forces, or Casimir and thermal effects. Electrostatic considerations
are accordingly the only ones taken into account.

The electrostatic problem consists in the determination of the
electric potential field U in the vacuum domain under boundary
conditions [13]. Under the assumptions of static potentials and no
Fig. 2. Cantilevered bi-articulated nanowire immersed in electrostatic field.
electrical charges inside the domain [14], this electrostatic
problem can be reduced to the Laplace equation

DU¼ 0: ð2Þ

The unique solution of Laplace’s equation must satisfy the
Dirichlet boundary conditions imposed by the physical situation
sketched in Fig. 2 b. A constant potential U0 is imposed on the
base S0, the metallic structure composed of the tungsten tip
support and the nanowire. The top surface S1 is raised to a
potential U1 in order to simulate the voltage U = U1�U0 between
the nanowire apex and its environment. Finally, we impose a
linear evolution between U0 and U1 on the lateral face S2.
Boundaries S1 and S2 are chosen far enough from the nanowire
to fulfil the hypothesis of a semi-infinite dielectric medium.

Once the electric potential U is defined in the whole domain,
the electric field is easily deduced [13] according to

E ¼�rU: ð3Þ

Under the classical requirement that the electric field be
everywhere perpendicular to the surface of the conductor, the
electrostatic forces can be computed from the field at the surface
of the nanowire following

F ¼ 1
2e0SE:ðE;nÞ; ð4Þ

where e0 ¼ 8:85� 10�12 F=m is the permittivity of vacuum and n

is the outer normal vector of the nanowire surface S. From an
electrical point of view, the capacity between the nanowire and
its environment derives simply [13] from the electric field E

following

C ¼

R
S2e0E:n dS

U1�U0
: ð5Þ

A last electrical variable provided by the electrostatic problem is
the field enhancement factor b illustrating the nanowire tip effect
and involved in the expression of the FE current. Here, b is the
ratio between the electric field magnitude at the emitter apex and
the electrical potential difference U and reads

b¼
EðWÞ:n

U1�U0
; ð6Þ

where W is the point at the nanowire very end considered to be
the emission surface (Fig. 2 b). The boundary value problem (2) is
related to the geometrical configuration of the frontier S0.
According to the chosen kinematics, all the electrostatic quan-
tities depicted in this part depend on the nanowire motion,
characterized by the generalized coordinates q1 and q2. Moreover
the electrostatic forces F depend on potential difference U and
may also be written as F (q1, q2, U). The electrical quantities C and
b actually do not dependent on U since they are expressed in the
form �rU=U and read C(q1, q2) and bðq1; q2Þ.
(a) Kinematics of the nanowire. (b) Sketch of the electrostatic problem.



A. Lazarus et al. / International Journal of Mechanical Sciences 52 (2010) 1396–1406 1399
2.3. Mechanical model

We may now introduce the equations governing the motion of
the cantilevered nanowire in field emission. The diagram in Fig. 3a
illustrates the mechanical properties of the discrete model: m is
the nanowire mass per unit length, the constants k1 and k2 are
the rotational stiffnesses of the rotational springs while m
characterizes the viscous damping applied to the angular
velocities _q1 and _q2. The quantities F

1
and F

2
are the resultants

of the electrostatic forces F respectively on the first and second
bar. They are defined by the previous electrostatic problem and
also depend on the mechanical and electrical variables q1, q2

and U.
In order to express the governing equations directly in terms of

the chosen generalized coordinates, we use the Lagrangian
Formalism [15,16]. The system being nonconservative due to
friction and electrostatic forces, we use the virtual power principle.
The kinetic energy of the nanowire is naturally expressed in terms
of the generalized coordinates q1(t) and q2(t) as

T ¼ 1

2
m

L3

6
_q2

1þ
L3

24
_q2

2þ
L3

8
_q1 _q2cosðq1�q2Þ

� �
: ð7Þ

By introducing the two geometrically admissible angular velo-
cities d _q1 and d _q2, the virtual power of acceleration quantities is
simply obtained from the Lagrange formulae

Aðd _qjÞ ¼
d

dt

@T
@ _qj

 !
�
@T

@qj

" #
d _qj for j¼ 1;2: ð8Þ

We now express the virtual power done by the external forces for
the virtual angular velocities d _qj. We distinguish then between
three contributions done respectively by the restoring elastic
moments of the rotational springs Pe1, the restoring torque of
viscous dampers Pe2 and the electrostatic forces Pe3. They read

Pe1 ¼�k1ðq1�cÞd _q1�k2ðq1�q2Þd _q1�k2ðq2�q1Þd _q2; ð9aÞ

Pe2 ¼�c _q1d _q1�c _q2d _q2; ð9bÞ

Pe3 ¼ ðM1AþM2AÞd _q1þM2Bd _q2: ð9cÞ

According to our kinematics, the virtual power Pe3 is expressed in
terms of the moments of the electrostatic forces about the two
articulations which depend on the variables q1, q2 and U. While
M1A and M2A are respectively the torques of the resultants F

1
and

F
2

about the first articulation A, M2B is the moment of F
2

about
the second articulation B.

Finally, the principle of virtual power Aðd _qiÞ ¼Peðd _qiÞþPiðd _qiÞ

for each virtual variations d _qi leads to the nonconservative
Lagrange’s equations. Given that Piðd _qiÞ ¼ 0 in our system, the
nonlinear governing equations of the initially tilded bi-articulated
Fig. 3. Sketches of the NanoElectroMechanical System. (a
nanowire read

1
6 mL3 €q1þ

1
16 mL3 €q2cosðq1�q2Þþ

1
16mL3 _q2

2sinðq1�q2Þþm _q1

þk1ðq1�cÞþk2ðq1�q2Þ�M1A�M2A ¼ 0; ð10aÞ

1
24 mL3 €q2þ

1
16 mL3 €q1cosðq1�q2Þ�

1
16mL3 _q2

1sinðq1�q2Þþm _q2

þk2ðq2�q1Þ�M2B ¼ 0; ð10bÞ

where M1A, M2A and M2B depend on the generalized coordinates
q1, q2 and the electrical voltage U. Eqs. (10a), (9b) define the
mechanical model.
2.4. Electrical model

In field emission configuration, the electrons extraction leads to
a FE current Ie(t) flowing inside the conducting nanowire. As a
consequence, the voltage U between the cantilevered nanostruc-
ture and its environment governing the electrostatic moments is
not given by the applied DC voltage V [9]. Actually, the voltage U(t)
is determined by the experimental physical constraints, coming
down to the electrical circuit sketched in Fig. 3 b where notably, V

is the applied DC voltage, R the nanowire resistivity, C the nanowire
capacitance, Ic(t) the capacitor current and Ie(t) the FE current.

As for the mechanical governing equation, the differential
equation of the electrical circuit is obtained through the Lagrangian
formalism. Considering the charge q3 flowing inside the circuit as a
generalized coordinate, so that _q3 ¼ I is simply the electric current,
the electric power done for the virtual current d _q3 is noted

Pel ¼�Vd _q3þRId _q3þUd _q3: ð11Þ

From this point, it is more convenient to express Pel in terms of U(t)
involved in the mechanical equation (10) through the electrostatic
moments. According to Kirchhoff’s current law, the electric current
flowing in the nanowire reads I = Ic + Ie where Ic and Ie are given by

Icðq1;q2;UÞ ¼
dðCUÞ

dt
¼ C _UþU

@C

@q1

_q1þ
@C

@q2

_q2

� �
; ð12aÞ

Ieðq1; q2;UÞ ¼Hb2U2e�G=bU : ð12bÞ

The capacitor current Ic is given by (12a) where the second term is
due to the dependence of the capacitance on the nanowire position
pointed out in the previous section. The current Ie is given by the
field emission theory [6] and Eq. (12b) is the Fowler–Nordheim
formula where constants H and G are empirical and the field
enhancement factor b is defined by the previous electrostatic
problem. For the cantilevered nanoemitter in field emission, Ie and
Ic depend not only on the voltage U but on the nanowire position q1

and q2 through the electrostatic variables b and C.
) Mechanical contribution. (b) Electric contribution.
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Finally, replacing the relations (12) in the virtual electric
power (11) and applying the virtual power principle for each
virtual variations d _q3 which is simply Pel ¼ 0, we obtain

RC _UþRU
@C

@q1

_q1þ
@C

@q2

_q2

� �
þRHb2U2e�G=bUþU�V ¼ 0 ð13Þ

where C and b depend on q1, q2 according to the previous
electrostatic relations (5) and (6). This nonlinear equation governs
the voltage U(t) which is the third generalized coordinates
necessary to define the configuration of our electromechanical
system at each time t.

2.5. Dimensionless form

The dimensionless electrical potential u¼ ðU�U0Þ=ðU1�U0Þ is
obtained by computing the Laplace equation

Du¼ 0 ð14Þ

with the Dirichlet boundary conditions such as u¼ 0 on the base
S0, u¼ 1 on the top surface S1 and so that a linear evolution
between 0 and 1 is imposed on the lateral face S2 (Fig. 2b). The
dimensionless electrical field e is the opposite gradient of u.
The electrostatic moments resulting from the dimensionless
electrostatic problem are noted M0 and only depend on the
generalized coordinates q1 and q2. Let Uref be the reference voltage
above which the Fe current Ie given by (12b) is no more negligible.
We introduce the constants Cref and bref which are respectively
the capacitance and amplification factor of the nanostructure in

its symmetrical position (q1, q2) = (0,0). Using o¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=mL3

q
as a

reference frequency for the mechanical oscillator, we define the
dimensionless variables:

t¼ot; Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1mL3

q
c

; u¼
U

Uref
; ak ¼

k2

k1
; r¼oRCref ;

h¼ RHb2
ref Uref ; g ¼

�G

bref Uref
; ie ¼ hb2u2eg=bu;

m¼M0

U2
ref

k1
; c¼

C

Cref
; b¼

b
bref

: ð15Þ

In particular, Q is the nanowire quality factor and r the ratio
between the electrical and mechanical time constants. The

quantity ie is the dimensionless form of the FE current Ie and m

is the dimensionless electrostatic moment. After simple calcula-
tions, Eqs. (10) and (13) may be re-written in dimensionless form
as

€q1þ
3

8
€q2cosðq1�q2Þþ

3

8
_q2

2sinðq1�q2Þþ
6

Q
_q1þ6ðq1�cÞ

þ6akðq1�q2Þ�6½m1Aþm2A�u
2 ¼ 0; ð16aÞ

€q2þ
3

2
€q1cosðq1�q2Þ�

3

2
_q2

1sinðq1�q2Þþ
24

Q
_q2

þ24akðq2�q1Þ�24m2Bu2 ¼ 0; ð16bÞ

rc _uþruðc;1 _q1þc;2 _q2Þþhb2u2eg=buþu�v¼ 0; ð16cÞ

where c;j ¼ @c=@qj for j = 1,2. Eqs. (16) are the nonlinear

dimensionless governing equations of a cantilevered bi-articu-
lated nanowire in field emission. The dynamic behaviour of this
NanoElectroMechanical System is determined by computing
unknown generalized coordinates q1, q2 and u at any time t

knowing that all the other quantities are defined. Indeed,
variables m1Aðq1; q2Þ, m2Aðq1; q2Þ, m2Bðq1; q2Þ, cðq1; q2Þ and
bðq1; q2Þ, responsible for the electromechanical interactions, are
determined after solving the independent dimensionless electro-
static problem (14). As for the remaining electrical or mechanical
parameters, they are directly derived from experimental data and
presented in the following section.
3. Values of parameters

In this section, the mechanical and electrical model parameters
are defined in order to simulate and study the self-oscillations of a
nanowire in field emission. It will also specify the order of
magnitude of the involved physical quantities.

3.1. Electromechanical parameters

The dimensions and the material properties of the investigated
nanostructures are completely given by the vapour–solid growth
mechanism of the silicon carbide (SiC) nanowires. According to
their typical experimental aspect ratio, we assume a length
L¼ 10mm and a circular cross section with diameter D = 200 nm
(giving a area moment of inertia In ¼ pD4=64). The nanowire
material being almost equivalent to pure carbon, the density is
r¼ 3200 kg=m3 and leads to a mass per unit length expressed as
m¼ rpðD=2Þ2 ¼ 1� 10�10 kg. Young’s modulus E is determined
by field emission [7] and is taken as E = 400 GPa. At room
temperature and in an Ultra High Vacuum chamber, the
mechanical quality factor of a singly clamped nanowire can
reach 160 000 [2]. In our simulations, we choose a classic value Q

= 20 000. The Fowler–Nordheim constants introduced in (12b)
are experimentally found as H = 2.73�10�24 A m2 V�2 and
G = 4.4145 �1010 mV�1 [9]. Finally, the SiC nanowires are highly
resistive and their electrical resistance can be taken as R = 1010O.

Coming back to the discrete model determined in the previous
section, one has to adapt the given experimental quantities to the
actual parameters necessary in the governing equation (16). The
electric constants R, H and G can directly be used in the model,
and the same is true for the mechanical parameters L or Q.
However, the springs stiffnesses and the rigid bars mass have to
model the mechanical behaviour of the continuous structure
characterized by E, In and its mass. Because of our low-
dimensional discretization, we will not capture all dynamical
experimental features. In this paper, we assume the mass per unit
length m to be equal to the experimental one. In order to keep a
good static model, we impose that the static deflection of the
cantilevered nanowire under an end load F0 is equivalent for
the continuous and its discrete counterpart. According to [17],
it comes simply

F0L3

3EI
¼

L

2

F0L

k1
þ

L

2

F0L

2k2
: ð17Þ

In order to ensure consistency in the dynamic model, we
constrain the ratio between the natural frequencies of the
clamped-free beam first two modes to be equivalent in the
discrete and continuous model. While this ratio reads
o2=o1 ¼ 6:3 in the continuous case [17], the discrete case is
obtained by solving the set of equations

1

6
mL3 1

16
mL3

1

16
mL3 1

24
mL3

2
664

3
775 €q1

€q2

 !
þ

k1þk2 �k2

�k2 k2

" #
q1

q2

 !
¼

0

0

� �
: ð18Þ

Eq. (18) is directly derived from the linearization of the
mechanical equations (10) when no damping, no initial tilting
angle c and no electrostatic forces are considered. By simply
respecting the required ratio between the eigenfrequencies of
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Eqs. (18), we obtain the desired parameter which are in our
specific case k1 = 2.36 EI/L and k2 = 2.06 EI/L., i.e. a stiffness ratio
ak = 0.873.
3.2. Electrostatic variables

The electrostatic variables c, b and m are not obtained directly
from the experimental data but through the electrostatic problem
given in Section 2.2 and they depend also strongly on the
nanowire aspect ratio L/D. The determination of these parameters
and their related quantities such as r, Uref, bref and Cref, are
described in the following.

The electrostatic problem sketched in Fig. 2 and accounted for the
dimensionless Laplace equation (14) is computed using the finite
element software Cast3m [18]. Solving this equation for different sets
of generalized angular displacements (q1, q2) yields a discrete map
of the dimensionless electrostatic quantities in the (q1, q2) space.
A polynomial regression is then sufficient to define the continuous
field enhancement factor b(q1, q2), the electrical capacitance c(q1, q2)
and electrostatic moments mðq1; q2Þ that are necessary for the further
numerical analysis of the governing equations.

The vacuum chamber and the boundary surfaces S0, S1 and S01

are generated using 3D elements (20 nodes hexahedral) and are
represented in Fig. 4. According to our kinematics, the
cantilevered nanowire of length L is modelled by two cylindrical
bars with diameter D making an absolute angle q1 and q2 with the
symmetrical configuration (Fig. 4b). The nanowire apex is
represented by a perfect semi-sphere oriented following the
upper bar direction. Due to the large scale ratio between
the structure and its environment, electrostatic phenomena will
take place mostly in the vicinity of the nanowire. As a
Fig. 4. 3D Finite element model of the electrostatic boundaries. (a) Outsid

Fig. 5. Electrostatic fields nearby the nanowire for q1 ¼ 103 and q2 ¼�43 . (a)
consequence, the regular mesh has to be refined nearby the
structure but relaxed far from it to keep reasonable computation
times. Finally, the solution of the dimensionless Laplace equation
(14) is discretized with quadratic shape functions in order to
correctly model the electrostatic field evolution near the
nanowire apex. The system of linear equations arising from the
approximation of (14) is solved using Crout method [19].

A typical electric potential (for q1 ¼ 103 and q2 ¼�43) is shown
in Fig. 5a for a cross-section of the vacuum chamber in the vicinity
of the bi-articulated nanowire. Most of the change in the scalar
field u takes place close to the nanowire. As a consequence, the
electric field e ¼�ru, is localized all around the structure (Fig. 5
b). Due to the large value of the aspect ratio, e is concentrated at
its apex as expected (tip effect).

According to the dimensionless form of the electrostatic
problem, the field enhancement factor b is just the magnitude
of the electric field at the pole of the semi-sphere while the
electric capacitance C is the total charge of electrons on the
nanowire given by (5). The continuous functions b(q1, q2) and c(q1,
q2) are obtained by applying a second order polynomial regression
to their discrete value computed for hundred values of (q1, q2) in
the range ½�103;103

�. They read

bðq1; q2Þ ¼ �0:058q2
1�0:074q2

2þ0:019q1q2; ð19aÞ

cðq1; q2Þ ¼�0:105q2
1�0:06q2

2þ0:082q1q2 ð19bÞ

given that bref ¼ 1:032� 107 m�1 and Cref ¼ 5:192� 10�17 F for
the symmetrical position (q1, q2) = (0,0). These electrical functions
are maximal for the symmetrical position (0,0) and decrease
quadratically when the nanowire moves away from it. Note that
for practical purpose, the nanowire apex is not perfectly smooth
e view of the electrostatic box. (b) Nanowire: q1 ¼ 103 and q2 ¼�43 .

Evolution of electric potential. (b) Evolution of electric field magnitude.
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but made up of several protrusions which are the real field
emitters. According to classical electrostatic theory [13], bref has
also been multiplied by 3 to take into account the electric field
amplification due to a hemispherical protrusion. Once these
quantities computed, the ratio of time constants reads simply
r¼oRCref ¼ 4:458. The voltage reference Uref corresponds to the
emergence of the FE current ie inside the emitter. For practical
purposes, it is chosen so that ie40:01 when U4Uref and is Uref =
400 V in our case. Below this reference value, the FE current given
by the Fowler–Nordheim formula (12b) is negligible due to the
exponential term e�G=bU . The shape of the dimensionless current Ie

in the (q,u) space is given in Appendix A (Fig. 10).
The electrostatic forces derive from the electric field e

according to (4). Two particular features can be made out. First,
the tip effect pointed out in Fig. 5b introduces strong partial
following [20] pulling forces at the nanowire apex. Second, the
symmetry of the electric field being broken by the leaning
nanowire, the resultant electrostatic forces are restoring forces
trying to bring the structure back to its symmetrical position. The
electrostatic moments m1A, m2A and m2B about the two articula-
tions arise from the vector product between the electrostatic
forces and their distance with the considered articulation. The
coefficients of the second order polynomial regressions of the
discrete value of m1A, m2A and m2B computed in the (q1, q2) space
are given by

m1Aðq1; q2Þ ¼ 0:026q1�0:051q2; ð20aÞ

m2Aðq1; q2Þ ¼�0:117q1þ0:054q2; ð20bÞ

m2Bðq1; q2Þ ¼ 0:008q1�0:029q2: ð20cÞ

The evolution of the moments is simply linear and their signs
are in agreement with the ‘‘restoring forces’’ properties. Moreover,
the magnitude of the moments decreases with the generalized
coordinates (q1, q2) down to the symmetrical position (0,0) where
they cancel.
4. Numerical results

4.1. Computation of the static position

The static equilibrium of the bi-articulated nanowire, later
called the base state, depends on the constant applied voltage V

and is obtained by computing the fixed points (q1
0, q2

0, u0) of
system (16):

ðq0
1�cÞþakðq

0
1�q0

2Þ�½m1Aþm2A�u
2
0 ¼ 0; ð21aÞ

akðq
0
2�q0

1Þ�m2Bu2
0 ¼ 0; ð21bÞ

v�u0�hb2u2
0eðg=bu0Þ ¼ 0: ð21cÞ

In this nonlinear set of equation, the dimensionless electrical
and mechanical quantities have been defined in Section 3 where
the continuous functions b(q1

0, q2
0) and mðq0

1; q
0
2Þ are given by (19)

and (20). The base state branch [21] deriving continuously from
the base state ðq0

1; q
0
2;u0Þ ¼ ðc;c;0Þ at v = 0, is determined by

progressively increasing the control parameter v. The problem
f(q1

0, q2
0, u0) = 0 is solved using Newton–Raphson method for each

step v with the initial guess coming from the previous step.
For an initial tilting c¼ 203, we plot the evolution of fixed

points (q1
0, q2

0, u0) against v in Fig. 6. Two distinct behaviours can
be clearly removed from the smooth branches. For a constant
applied voltage V lower than the voltage reference Vref (i.e. vo1),
the FE current Ie given by the Fowler–Nordheim formula (12b) is
negligible (no emission). Thus, according to the electrical equation
(21c), the voltage at the nanowire apex reads directly u0 = v

(Fig. 6b). The restoring electrostatic moments being proportional
to u0

2, the bi-articulated nanowire is almost quadratically coming
back to its symmetrical position (Fig. 6a).

In emission configuration, i.e. for v41, the FE current Ie is no
longer negligible and increases exponentially with u0, following
the Fowler–Nordheim equation. Due to the nanowire electrical
resistance, a supplementary voltage behaving exponentially as Ie

appears inside the electrical circuit model by (21c). As a
consequence, the voltage u0 between the nanowire and its
environment saturates when increasing v (Fig. 6 b). The electro-
static moments saturate as well and the same is true for the
evolution of the generalized coordinates (q1, q2) (Fig. 6a).
4.2. Stability of the static solutions

We consider the perturbation expansions in the form
qðtÞ ¼ q0þe ~qðtÞ and uðtÞ ¼ u0þe ~uðtÞ. Substituting these expan-
sions into the dimensionless governing Eq. (16) and equating the
first power of e, we express the linearized governing equation
around the static equilibrium (q1

0, q2
0, u0)

€~q 1þ
3

8
€~q 2cosðq0

1�q0
2Þþ

6

Q
_~q 1þ6ð ~q1�cÞþ6akð ~q1� ~q2Þ
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�6u2
0

X2

j ¼ 1

½m1A;jþm2A;j� ~qj�12u0½m1Aþm2A� ~u ¼ 0; ð22aÞ

€~q 2þ
3

2
€~q 1cosðq0

1�q0
2Þþ

24

Q
_~q 2þ24akð ~q2� ~q1Þ�48u0m2B ~u

�24u2
0

X2

j ¼ 1

m2B;j ~qj ¼ 0; ð22bÞ

rc _~uþru0

X2

j ¼ 1

c;j
_~q jþð1þ ie; ~u Þ ~uþ

X2

j ¼ 1

ie;j ~qj ¼ 0: ð22cÞ

The dimensionless FE current ie, the electrical capacitance c

and electrostatic moments m are continuous functions of (q1
0, q2

0)
according to (19) and (20) obtained from the electrostatic
problem. Their partial derivatives with respect to ~qj are denoted
by the subscript ( ),j and defined at (q1

0, q2
0). In particular,

derivatives of the FE current are determined with b(q1
0, q2

0) given
in (19) following

ie;j ¼
i0e
b2

b;jb�g
b;j
u0

� �
; ie; ~u ¼ i0

e

2

u0
�

g

bu2
0

 !
; i0e ¼ ieðq

0
1; q

0
2;u0Þ

ð23Þ

and where the subscript ð Þ; ~u denotes the derivative with respect
to ~u.

Eq. (22) may be rewritten in the physical space
ZðtÞ ¼ ½ ~q1 ~q2 ~u�T in the more compact way

M €Z ðtÞþD _Z ðtÞþKZ ðtÞ ¼ 0; ð24Þ

where M, D and K are respectively the mass, damping and
stiffness matrix of the coupled system (22). The stability of the
base state branches (q1

0, q2
0, u0) is reached by stating the

perturbation Z ðtÞ in the form

ZðtÞ ¼jest with j ¼ ½ ~qA
1
~qA

2
~uA
�T ; ð25Þ

where the characteristic exponent s¼ sþ io leads to the decay rate
s and the dimensionless frequency o of the eigenmode j. For
practical purpose, the eigenproblem arising from (24) is solved in
the phase space W ðtÞ ¼ ½ ~q1 ~q2 ~u _~q 1

_~q 2�
T where (24) becomes

B _W ðtÞ�AW ðtÞ ¼ 0 ð26Þ

and W ðtÞ ¼Fest so that the computed eigenproblem reads

½sB�A�F ¼ 0 with F ¼ ½ ~qA
1
~qA

2
~uA s ~qA

1 s ~qA
2�

T : ð27Þ
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Fig. 7. Linear vibratory behaviour of the static equilibrium against v. (a) E
For each value of the control parameter v, the fixed points (q1
0, q2

0,
u0) are computed using (21) so that the linearized governing
equation (22) is completely defined. The eigenmodes j and their
associated eigenvalues s are then computed for each v with (27).

For v = 0, the electromechanical system (22) is totally
uncoupled given that u0 = i0e = 0. The first eigenmodes j

1
and

j
2

are the mechanical modes of the bi-articulated nanowire of
the form j ¼ ½ ~qA

1
~qA

2 0�T . These entities are respectively the
classical first and second bi-articulated modes with natural
frequencies o1 and o2 given in Section 3 and where the decay
rates s1 and s2 are linked to the quality factor Q. The third
eigenmode j

3
is the electrical mode of the RC circuit formed by

the nanowire. This stationary mode ðo3 ¼ 0Þ is associated with the
strong decay rate s3 ¼�1=RC.

When increasing v, the purely mechanical and purely electrical
modes combine into electromechanical modes. The electrical
contribution ~uA in the oscillating modes j

1
and j

2
grows

progressively and the eigenvalues s vary. In the same way, the
mechanical contributions ~qA

1 and ~qA
2 increase in the stationary

mode j
3

but the decay rate s3 is strongly decreasing. Thus, the
interesting physical phenomenon will be contained in the first
mode shapes j

1
and j

2
. In the following, only the natural

frequencies and decay rate of these first two modes are
investigated in order to determine the stability of the fixed points
plotted in Fig. 6.

The evolution of the dimensionless eigenvalues s against v for
a cantilevered bi-articulated nanowire in field emission is
displayed in Fig. 7 for the situation of interest. The increase of
the natural frequencies showed in Fig. 7a accounts for the strong
electrostatic pulling coming from the tip effect in field emission
(already expected in Section 3.2). As in Section 4.2 for the
computation of fixed points, two distinct behaviours are observed
depending on the applied voltage V compared to the field
emission reference voltage Uref. Indeed, the saturation of the
voltage u0 illustrated in Fig. 6 b and due to the FE current
emergence is directly reflected in the electrostatic pulling forces,
i.e. in the geometric stiffness.

According to the variation of the decay rate given in Fig. 7b, the
first mode j

1
becomes linearly unstable for a low voltage

v, highlighting thereby the qualitative agreement between the
bi-articulated nanowire modelling and the experimental observa-
tions made in [9]. As above, it is possible to define two domains in
the decay rate evolution, separated by an inflexion point located
at v = 1, indicating that the field emission must be involved in the
destabilization process. A simpler kinematic model (straight
nanowire), given in Appendix A, may be used to approximate
0 0.5 1 1.5 2 2.5
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this FE instability mechanism. Notably, the analytical form of sðvÞ
points out the interplay of the electromechanical parameters
triggering such phenomenon.
4.3. Stability domain

By computing the eigenproblem (27) for different set of
dimensionless parameters, we obtain the stability map of the
cantilevered bi-articulated nanowire in field emission. Fig. 8
shows the decay rate of the mode j

1
in the dimensionless spaces

ðv;cÞ, (v,Q) and (v,r). The white regions are related to so0 and
are also referred as stability regions while the dark ones display
the decay rates s40, i.e. the instability regions where the hue
illustrates the magnitude of s. The numerical parameters used in
the computations are those defined in Section 3, c¼ 203, Q =
20 000 and r¼oRCref ¼ 4:458.

Fig. 8a represents the stability map of the NanoElectroMecha-
nical System when varying the initial angle c and shows that a
minimum angular imperfection is needed to trigger the instabil-
ity. Actually, if the nanowire position (q1

0, q2
0) is too close from its

symmetrical position (0,0), the FE current dependence on (q1, q2)
is not sufficient to counterbalance the stabilizing terms ie; ~u and c,j

given in Eq. (22). Indeed, for a given u0, ie (q1
0, q2

0, u0) is maximal at
(q1

0, q2
0) = (0,0) and decreases quadratically when q1

0 and q2
0

increase according to (23) and (19). Its derivatives are also larger
for high c.

Fig. 8b illustrates the influence of the mechanical Q factor on
the stability. Once again, a minimum quality factor is required to
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Fig. 8. Stability maps of the bi-articulated nanowire in field emission. (a) Influence of an

c¼ 203). (c) Influence of the time constant ratio ðc¼ 203;Q ¼ 20 000Þ.
destabilize the system. Indeed, when decreasing Q, the decay rate
of the first mode given in Fig. 7b is shifted to a smaller magnitude.
Thus, for ‘‘small’’ Q, the maximum value of sðvÞ due to the
stabilization of ie; ~u is negative and no instability can occur. Note
that the high numerical Q factor causing instability are in good
agreement with the experimental ones [2].

Finally, the last stability map investigated in this section is
given in Fig. 8c and highlights the influence of the time constant
ratio r¼oRCref on the nanowire stability. The system is unstable
only if the time constant of the mechanical oscillator and
electrical RC circuit are of the same order of magnitude. In fact,
if this condition is not fulfilled, the energy associated with the
destabilizing electrical term ie; ~q (Appendix A) is no longer
supplied to the first mechanical mode. Fig. 8b seems to be the
most relevant numerical results to explain the lack of self-
oscillations observed when using the field emission configuration
with carbon nanotubes since they have an electrical resistance
of approximately 105O leading to a time constant ratio
r=4.458�10�5.
4.4. Limit cycles

In this last part, we investigate the nonlinear dynamics of the
bi-articulated nanowire in field emission. The purpose is to
determine the nanowire equilibrium after initial perturbations of
the base state branches given in Fig. 6. This equilibrium is
numerically simulated by directly integrated the generalized
coordinates q1ðtÞ, q2ðtÞ and uðtÞ from the dimensionless governing
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Eq. (16). For practical purpose, this fully implicit differential
equation is expressed in the form

f ðt;Y ; _Y Þ ¼ 0 with Y ¼ ½q1ðtÞ q2ðtÞ uðtÞ _q1ðtÞ _q2ðtÞ�T : ð28Þ

The differential system (28) is solved for an applied DC voltage
v and the initial conditions q1(0), q2(0) and u(0) are the fixed
points q1

0, q2
0 and u0 computed from Eq. (21). The initial

perturbations are applied on the initial angular velocities
f1ð0Þ ¼ _q1ð0Þ and f2ð0Þ ¼ _q2ð0Þ. The electrical quantities b, c and
m are the polynomial regressions of the generalized coordinates
q1 and q2 given in (19) and (20). Since they are continuous
functions, the problem (28) is well defined for any t.

Fig. 9 represents the dynamic response of the bi-articulated
nanowire in field emission after damping of the transient for a
voltage v slightly superior (0.1%) to the instability threshold given
in Fig. 7b. The limit cycles plotted in the phase space of the Fig. 9a
illustrate the nanowire vibration around its static equilibrium
position. The electromechanical model thus seems to account for
the experimental self-oscillations observed in [9]. Fig. 9c shows
the Power Spectral Density of the steady-state responses q1ðtÞ and
q2ðtÞ. At threshold, the mechanical response is harmonic with a
frequency o given by the linear analysis in Fig. 7a.

Fig. 9b displays as well the self-oscillations of the electric
voltage uðtÞ around its static equilibrium. This time, the secondary
harmonic of the steady-state response is not negligible beside the
fundamental one o. In agreement with experimental observa-
tions, the electrical signal contains a 2o component [9]. Indeed,
uðtÞ is oscillating with regard to the absolute position (q1, q2) and
performs also two cycles during a nanowire oscillation period.
According to the Fowler–Nordheim formula (12b), the FE current
ieðtÞ is oscillating at the same frequency as uðtÞ illustrating the
possibility of DC/AC conversion in this unforced device.
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5. Concluding remarks

The study of the basic mechanical phenomena in NEMS and
how they can be best controlled by external parameters is of
prime importance in view of exploiting their possibilities in
devices especially because new effects come into play at the
nanoscale that lead to both complications and opportunities.
In particular, the possibilities of self-oscillating nanowires in field
emission shown by Ayari et al. [9] is an important step toward
making NEMS active rather than passive devices but deserves
further investigations to understand and also control this physical
phenomenon.

This paper gives a low-dimensional model to simulate the
nonlinear behaviour of a cantilevered nanowire in field emission.
The numerical method was presented with a bi-articulated
nanowire but can easily be adapted to another kinematics for
obtaining quantitative results rather than qualitative ones. We
here highlighted the ins and outs of this electromechanical
system resulting from an original coupling between the nanos-
tructure nonlinear motion, its electrostatic environment and
electrical contributions coming from the FE current emergence.
For a given applied voltage, the linear stability of the static
equilibrium results from the interplay of the FE current depen-
dence on the nanowire absolute position and its dependence on
the emitter’s voltage. This interplay, illustrated by the Fowler–
Nordheim formula, is very sensitive to external parameters and
the same is also true for the emergence of oscillations. We showed
that a minimum initial angular tilting, a high Q factor and a
sufficiently high electrical resistance are required to trigger
instability.

For a threshold of applied voltage, the direct integration of the
nonlinear electromechanical governing equations simulates the
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limit cycles of the system pointing out the possibility of DC/AC

conversion in this electromechanical device. The dimension of the
electromechanical system (16) and its strong linearities are
sufficient to display complex behaviour of the limit cycles when
increasing the control parameter v [21]. Future work would focus
more on this original Hopf bifurcation to improve the physical
understanding of the self-oscillations.
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Fig. 10. Evolution of the dimensionless FE current for the straight nanowire.
Appendix A. Simplified model for the field emission instability

A simpler kinematic model can be used to approximate the FE
instability by setting q(t) = q1(t) = q2(t) at any time t (straight
nanowire case). Even if this basic model contains a poorer kinematics
than its two degrees-of-freedom counterpart (specially not taking in
account follower forces), it is sufficient to capture properly the main
features of the instability mechanism. Deriving from Eq. (21), the
fixed points (q0, u0) of the straight cantilevered nanowire in field
emission satisfy the two degrees-of-freedom electromechanical
equations

v�u0�hb2u2
0eðg=bu0Þ ¼ 0; ðA:1aÞ

q0�c�mAu2
0 ¼ 0; ðA:1bÞ

where the dimensionless moment mAðq
0Þ comes from the external

electrostatic forces applied on the straight nanostructure. Fig. 10
displays the evolution of the dimensionless FE current in the (q,u)
space given by the Fowler–Nordheim formula ie ¼ hb2u2

0eðg=bu0Þ

where b (q0) is computed from the electrostatic problem with a
straight nanowire. The electromechanical parameters used in Fig. 10
are given in Section 3. The linearized governing equations around (q0,
u0) derive from (22) and read

rc _~uþð1þ ie; ~u Þ ~u ¼�ru0c; ~q
_~q�ie; ~q ~q; ðA:2aÞ

€~qþ
3

Q
_~qþð3�3c�3u2

0mA; ~q Þ ~q ¼ 6u0mA ~u; ðA:2bÞ

where the subscripts ð Þ; ~q and ð Þ; ~u respectively represent the
derivatives with respect of ~q and ~u. Finally, by expressing the
coupled Eq. (A.2) in the modal basis ZðtÞ ¼ ½ ~qðtÞ ~uðtÞ�T ¼
½ ~qA ~uA

�T est, we find for the decay rate of the mechanical prevailing
mode j

1
:

sðvÞ ¼� 3

Q
þGðvÞ; ðA:3aÞ

with GðvÞ ¼
6ru0mA

r2o2þð1þ ie; ~u Þ
2
� ½ie; ~q�ð1þ ie; ~u Þu0c; ~q �: ðA:3bÞ

Relation (A.3) governs the stability of the straight nanowire
static equilibrium against v implicitly through the dependence of
the fixed points (q0, u0) given by (A.1). It can also be qualitatively
extended to the decay rate of the first mode of the bi-articulated
model given in Fig. 7b and serves as a support for the
understanding of the stability maps in Fig. 8.

For vo1, there is no field emission. The FE current and its
partial derivatives ie; ~q and ie; ~u are negligible (Fig. 10). The only
stabilizing term in relation (A.3) comes from the capacitance
dependence on q and the decay rate decreases when v increases.
This behaviour is in agreement with the evolution of the decay
rate of the first mode given in Fig. 7 b.

For v41, i.e. in field emission configuration, the decay rate
(A.3) depends on the competition between the destabilizing term
ie; ~q and the stabilizing terms ie; ~u and c; ~q . At the beginning of the
emission, ie; ~q and ie; ~u , given by (23), are of the same order of
magnitude and the instability can occurred if c; ~q is not too large as
in Fig. 7b. For higher voltage, since ie; ~u is increasing faster than ie; ~q ,
the FE destabilizing effect becomes negligible and sðvÞ tends to a
maximal value before decreasing again due to the stabilizing
terms ie; ~u and c; ~q .

References

[1] Ekinci KL, Roukes ML. Nanoelectromechanical systems. Review of Scientific
Instruments 2005;76:061101.

[2] Perisanu S, Vincent P, Ayari A, Choueib M, Purcell ST, Bechelany M, et al. High
Q factor for mechanical resonances of batch-fabricated SiC nanowires.
Applied Physics Letters 2007;90:043113.

[3] Jensen K, Kim K, Zettl A. An atomic-resolution nanomechanical mass sensor.
Nature Nanotechnology 2008;3:533–7.

[4] Gammel P, Fischer G, Bouchaud J. RF MEMS and NEMS technology, devices
and applications. Bell Labs Technical Journal 2005;10:29–59.

[5] Purcell ST, Vincent P, Journet C, Binh VT. Tuning of nanotubes mechanical
resonances by electric field pulling. Physical Review Letters 2002;89:273103.

[6] Bonard J-M, Kind H, Stockli T, Nilsson L-O. Field emission from carbon
nanotubes: the first five years. Solid-State Electronics 2001;45:893–914.

[7] Perisanu S, Gouttenoire V, Vincent P, Ayari A, Choueib M, Bechelany M, et al.
Mechanical properties of SiC nanowires determined by scanning electron and
field emission microscopies. Physical Review B 2008;77:165434(12).

[8] Perisanu S, Vincent P, Ayari A, Choueib M, Guillot D, Bechelany M, et al. Ultra
high sensitive detection of mechanical resonances of nanowires by field
emission microscopy. Physica Status Solidi 2007;204:1645–52.

[9] Ayari A, Vincent P, Perisanu S, Choueib M, Gouttenoire V, Bechelany M, et al.
Self-oscillations in field emission nanowire mechanical resonators: a
nanometric dc-ac conversion. Nano Letters 2007;7:2252–7.

[10] Paidoussis MP. Fluid–structure interactions: slender structures and axial
flow, vol. 1. New York: Academic Press; 1998.

[11] de Langre E, Paidoussis MP, Doare O, Modarres-Sadheghi Y. Flutter of long
flexible cylinders in axial flow. Journal of Fluid Mechanics 2007;571:371–91.

[12] Gibson RF, Ayorinde EE, Wen Y-F. Vibrations of carbon nanotubes and their
composites: a review. Composites Science and Technology 2006;67:1–28.

[13] Vanderlinde J. Classical electromagnetic theory. New York: Wiley; 1993.
[14] Bleaney BI, Bleaney B. Electricity and magnetism, vol. 1. Oxford: Oxford

Science Publications; 1991.
[15] Bolotin VV. Dynamic stability of elastic systems. San Fransisco: Holden-day;

1964.
[16] Champneys AR. Homoclinic orbits in the dynamics of articulated pipes

conveying fluid. Nonlinearity 1991;4:747–74.
[17] Blevins RD. Formulas for natural frequency and mode shape, vol. 1. New

York: Krieger Publishing Company; 1979.
[18] Verpeaux P, Charras T, Millard A. Castem 2000: Une approche moderne du

calcul des structures, Calcul des structures et intelligence artificielle, Pluralis,
Paris, France, 1988. p. 261–71.

[19] Moin P. Fundamentals of engineering. numerical analysis. Cambridge:
Cambridge University Press; 2001.

[20] Langthjem MA, Sugiyama Y. Dynamic stability of columns subjected to
follower loads: a survey. Journal of Sound and Vibration 2000;238:809–51.

[21] Manneville P. Instabilities, chaos and turbulence. Imperial College Press;
2004.


	Statics and dynamics of a nanowire in field emission
	Introduction
	Fully nonlinear model of a nanowire in field emission
	Kinematics
	Electrostatic model
	Mechanical model
	Electrical model
	Dimensionless form

	Values of parameters
	Electromechanical parameters
	Electrostatic variables

	Numerical results
	Computation of the static position
	Stability of the static solutions
	Stability domain
	Limit cycles

	Concluding remarks
	Simplified model for the field emission instability
	References




