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ABSTRACT: Ion transport through nanopores drilled in thin
membranes is central to numerous applications, including biosensing
and ion selective membranes. This paper reports experiments,
numerical calculations, and theoretical predictions demonstrating an
unexpectedly large ionic conduction in solid-state nanopores, taking its
origin in anomalous entrance effects. In contrast to naive expectations
based on analogies with electric circuits, the surface conductance inside
the nanopore is shown to perturb the three-dimensional electric current
streamlines far outside the nanopore in order to meet charge
conservation at the pore entrance. This unexpected contribution to
the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger
than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart.
This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of
translocation events through nanopores, as well as for ionic transport in biological nanopores.
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Nanopores have received a lot of attention in recent years1

for their potential applications as low-cost, high-
throughput biosensors,2,3 and membranes for filtering,4,5

desalination,6 and energy generation.7 Short transit length for
ions or biomolecules and nanometric detection area in a
nanopore are advantageous for biosensing in terms of spatial
resolution and sensitivity. It has been demonstrated that
translocation of nanoparticles8 or biomolecules such as DNA,9

proteins,10 and viruses11 through a nanopore can be detected
by monitoring the ionic current across this pore. A partial
blockage of a pore by a target object leads to a transient
downward pulse of ionic current, the magnitude and duration
of which is directly related to physical properties of the target
(e.g., diameter and length) or its interaction with the pore
surface. This is expected to translate into the necessary
information for DNA sequencing,12 protein detection,10 and
nanoparticle-based immunoassay.13 A signature in ion current is
used for sensing, and thus an understanding of ion current in a
nanopore, for example, how surface effects and bulk effects
contribute to the ion current, is required in designing
nanopore-based biosensors. In a different context, new
perspectives on ion transport through nanopores have been
suggested in an effort to engineer smart membranes for
filtering, desalination, and energy generation.6,7,14

The present paper describes an experimental investigation of
ion transport through solid-state nanopores as a function of
pore size and ionic strength. An unexpectedly large
conductance at small and moderate ion concentrations is
demonstrated, which is in contrast to simple expectations based
on analogies with equivalent electric circuits. Using full

numerical calculations of ion transport in the nanopore, we
show that this effect stems from three-dimensional entrance
effects outside the pore that couple to surface conduction inside
the pore. This unforeseen coupling, which occurs so as to
maintain charge conservation at the pore entrance,15 does
strongly perturb the electric current streamlines outside the
pore and maintains a high conductance path even at low ion
concentration. This effect is rationalized on the basis of an
analytical model for ion conduction, which reproduces both
numerical and experimental results. As a result, ion conduction
through the nanopore is characterized by an apparent electric
size that is much larger than its bare geometric diameter
whenever the salt concentration is small and/or the surface
charge on the pore surface is large, reaching hundreds of
nanometers in these conditions. Accordingly, the electrical
resistance of the pore does not depend on its diameter anymore
in this regime: tiny pores conduct as well as much larger pores.

Entrance Effects and Ion Conduction. A nanopore
differs from a nanochannel in that its length is comparable to or
smaller than its diameter, and is thus defined by a rather small
aspect ratio. Recently, ion transport in nanochannels with a
channel length much larger than the channel height or diameter
has been exhaustively investigated as a function of size and
ionic strength, see, for example, refs 16 and 17, and a good
understanding has now emerged. Altogether ion conduction
was shown to be a combination of bulk and surface
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contributions; while bulk conduction is attributed to ions inside
the bulk of the pore, surface conduction arises due to excess
counterions close to the surface screening the surface charge,
the so-called electric double layer (EDL).17,18 Accordingly, at
high salt concentration the ion conduction is mainly
determined by the bulk conductivity, κb, but at low salt
concentration, the surface conduction, determined by the
surface conductivity κs, becomes dominant over the bulk
conduction, leading to a saturation of the measured ion
conductance. This crossover occurs for nanochannel cross sizes
lower than the so-called Dukhin length, defined as the surface
to bulk conductivity ratio, Du = κs/κb.

15,18 In contrast, ion
transport in nanopores pierced in thin membranes is
paradoxically far more complex than in nanochannels; due a
much smaller aspect ratio, ion transport cannot be reduced to a
one-dimensional view as for a nanochannel, and the three-
dimensional nature of a nanopore makes it difficult to
comprehend ion transport in a nanopore on the basis of
simple electric analogies. Although the access effect was often
neglected in interpreting ion conductance in a nanopore,19,20 it
has been long known (in particular in the physiology
literature21,22) that the entrance imparts additional resistance
against ion transport, commonly referred to as access
resistance,23 and results in a lower conductance.21,22,24,25

Several approximated forms were proposed in an attempt to
account for the complex three-dimensional (3D) entrance
geometry of the pore. For example, Hall22 suggested that the
access resistance of a pore could be accounted for by
considering a semispherical cupola as an effective electrode,22,25

leading to a nanopore conductance behaving as
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where the second term accounts for the entrance effect; κb is
the bulk conductivity, L and D are the length and diameter of
the nanopore, respectively. This result assumes that the
resistance of the nanopore is the sum of the resistance inside
the pore, plus the entrance resistance that behaves typically like
(Dκb)

−1. This expression was recently further generalized to
more realistic hourglass-shaped pores.25 An interesting
prediction of this expression is that for nanopores, associated
with small aspect ratio L/D < 1, the conductance scales merely
like the diameter G0 ∝ D, while for long nanochannels with L
≫ D one expects a much stronger dependence, scaling as G0 ∝
D2. Entrance effects have accordingly a strong impact on
nanopores conductance.
The access resistance has received more attention in recent

years, as nanopores pierced in ultrathin membrane, like
graphene, emerged as a new class of nanopore with enhanced
performance.26−28 On the other hand, there have been few
studies as to how surface effects contribute to the conductance
in a nanopore.19,20 We show here that the 3D nature of the
nanopore opens a new conductance path that plays a key role
for the conductance at low ionic concentration.
Nanopores and Conductance Experiments. We fab-

ricated nanopores by drilling silicon nitride (SiN) membranes,
100 nm in thickness, with pore diameters D in the range 140,
160, 250, 430, and 520 nm. The largest pores (D = 250, 430,
and 520 nm) had a cylindrical shape, but nanopores with D =
140 and 160 nm were slightly conical (±10 nm in diameter).
The ion conductance through the nanopore was measured in a
home-built flow cell with the pierced membrane separating two

fluidic reservoirs (Figure 1). Potassium chloride solutions with
concentration varying between 5 × 10−5 and 1 M (mol/L) were

considered (with fixed pH 6) and the voltage was imposed
using Ag/AgCl electrodes (see Methods for details). For all
experimental data points, the salt concentration cs was obtained
from independent bulk conductivity measurements.
The experimental data for the measured conductance are

shown in Figure 2a for a wide range of salt concentrations and

various nanopore sizes. A representative set of voltage-current
curves for 140 nm diameter nanopore is shown in Figure 2b.
An interesting feature of these results is that the conductance
depends markedly on the pore diameter for large salt
concentration but appears to converge to a similar value for
low salt concentration. The predicted conductance accounting
for the geometric access effect in eq 1, using the bulk
conductivity κb measured independently, is plotted in Figure 2

Figure 1. (a) Schematic of a flow cell and (b) sketch of cross-section
of a nanopore. (c) Transmission electron microscopy image of a
nanopore with 140 nm diameter.

Figure 2. (a) Measured conductance over varying salt concentration in
nanopores with different diameters. As a comparison, the predicted
conductance from eq 1 is plotted together as dashed lines. The
deviation between the experimental data and the prediction of eq 1
becomes larger at low salt concentration, where the latter strongly
underestimates the conductance. (b) Current−voltage curves in a
nanopore with 140 nm diameter.
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as a comparison with experimental data. At high salt
concentration, experimental results are in good agreement
with the prediction, in line with previous experimental
studies.25,26 In particular the dependence of the conductance
on diameter is indeed found to be weaker than the prediction in
the absence of entrance effects (for which G ∝ D2). Corrections
due to entrance effects are essential to account for the
experimental data. However, at salt concentrations lower than
∼10−2 − 10−3 M, deviation from the predicted conductance
becomes apparent and eq 1 underestimates the measured
conductance by up to 1 order of magnitude.
As a first approach, one may discuss this observation in terms

of the characteristic length scales of the problem. First, one may
immediately realize that such effects cannot originate in the
overlap of EDLs inside the nanopore, as suggested in a previous
work using much smaller pores.19 The expression of the Debye
length, the characteristic thickness of the EDL, is given by λD =
[(εkBT)/(2e

2cs)]
1/2 where cs is the salt concentration, ε is the

dielectric permittivity of water, kB is the Boltzmann constant, T
∼ 300 K is the absolute temperature, and e is the elementary
charge.17,18 At 1 mM KCl concentration, where a strong
deviation from the bulk prediction is observed in Figure 2, one
has λD ≃ 10 nm, still far below the typical size of the pore.
Alternatively, and in analogy with similar observations for
nanochannels, the above results could point to surface
conduction effects. The latter is characterized by the so-called
Dukhin length introduced above

κ
κ

=Du
s

b (2)

where κs is the surface conductivity and κb is the bulk
conductivity. This length accounts for the relative importance
of the surface conduction in the pore as compared to the bulk
conduction.18 Using a Poisson−Boltzmann estimate for κs (see
ref 18 and Methods), one may rewrite this length as Du ≈ (|Σ|/
e)/(2cs), where Σ is the surface charge density and cs is the bulk
salt concentration. With a surface charge |Σ| = 20 mC/m2, a
typical value for a silicon nitride surface,19,29,30 the Dukhin
length is expected to be 100 nm at 1 mM KCl. This order of
magnitude for the Dukhin length compares directly with the
diameter of the pore, thereby showing that the surface
conduction mechanism should be indeed relevant for the
phenomena under scrutiny.
This leads to the central question on how to associate surface

conduction with access effects in thin pores. In strong contrast
to long nanochannels, entrance contributions cannot be
omitted for pores due to their small aspect ratio L/D, as, for
example, highlighted in eq 1, and a proper description should
combine both effects of surface conduction in the pore and
entrance contributions outside of the pore.
As a first attempt, one may try to extend the approach

proposed by Hille and Hall21,22 in order to account for the
surface conduction inside the nanopore together with entrance
effects. The descriptions for entrance effects are based on the
idea that the pore can be considered as several resistances in
series21,22 with the resistance inside the pore Rp supplemented
by the access resistances Rout on each side of the pore: R = Rp +
2Rout, so that the overall conductance verifies G = (Gp

−1 +
2Gout

−1)−1.
Following Hall and Hille,21,22 the access conductance can be

written as Gout = ακbD, where α is a geometrical prefactor that
depends on the model used (e.g., α = 2 in Hall22). In terms of
scaling, the physical idea behind this result is that the amplitude

of the electric field outside of the pore is mainly fixed by the
voltage drop, ΔVout, divided by a typical scale fixed by the
diameter D of the pore, Eout ∼ ΔVout/D and not the
(macroscopic) distance between the electrodes. The current I
writes accordingly: I ∼ (κbD

2)(ΔVout/D). A more proper
estimation proposed by Hall22 can be made by considering the
full 3D calculation of an equivalent electrostatic problem with a
geometry given by an electrode at infinity and an equipotential
in a disk accounting for the entrance of the pore.
Now, in the classic approaches by Hille and Hall,21,22 the

pore electric conductance Gp is usually assumed to be
proportional to the bulk conductivity Gp = κb[(πD

2)/(4L)].
As a first approach, one may thus simply add the contribution
of the surface conduction in this expression with

κ π κ π= +G
D
L

D
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2

s (3)

This leads to the following expression for the overall
conductance
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Note that this naturally introduces the Dukhin number Du =
4κs/(κbD) = 4 Du/D, which can be defined as the ratio between
the surface and bulk contributions to the electric current inside
the pore.
This expression in eq 4 extends the classical expression for

the conductance with surface contributions in eq 316,20 in order
to account for finite aspect ratio L/D of the channel.
The above expression for the conductance predicts a

crossover between two regimes. Using κb ∝ cs, then Du ∝ cs
−1

→ 0 at large salt concentration and one recovers the classic
expression for the conductance accounting for entrance effects
G ≃ G0, as defined in eq 1. It is indeed linear in salt
concentration. However, at low salt concentration with Du →
∞, the conductance scales as G ≃ κb[(αD)/2], again linear in
concentration. Accordingly, no saturation of the conductance is
predicted at low salt concentration from this first approach,
which is in contrast to what occurs for infinitely long pores,
corresponding to L ≫ D in eq 4. Physically, this is because the
conductance outside of the pore, Gout, vanishes for low salt
concentration, thereby limiting the global electric conductance.
Note that assuming a surface charge that depends on salt
concentration, as proposed, for example, in ref 20, does not
modify this conclusion, as the surface conduction κs becomes
irrelevant in this regime. In any case, access effects are
predominant for vanishing salt concentration because the
corresponding access resistance Rout becomes infinite in this
limit.
Therefore, this approach fails to reproduce the experimental

results in Figure 2, which exhibit a saturation of the
conductance at low salt concentration.
Altogether the observation of a large conduction in a

nanopore at small concentration points to a more complex
scenario than in nanochannels. As we will show below, the
understanding of this effect requires to fully revisit the 3D
conduction paths inside and outside the nanopore and points
to an unforeseen conduction mechanism.

Numerical Calculations of Conductance Inside a
Nanopore. In order to get further insights into the ion
transport mechanisms inside a nanopore, we performed
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exhaustive numerical calculations of ion transport through a
small aperture. To this end, we solved the Poisson−Nernst−
Planck equations for the electric potential V and the K+/Cl− ion
concentration c± using finite-element method (COMSOL).
The corresponding equations coupling the electric potential V
to the ion concentrations c± write

ε∇· − ∇ = − ∇· =+ − ±NV e c c( ) ( ); 0 (5)

where ε is the water permittivity, e the elementary charge, and
N± are the K+/Cl− fluxes:

μ μ= − ∇ ∓ ∇± ± ±N k T c e c VB (6)

with μ the ion mobility (assumed to be equal for K+ and Cl−).
We considered a pore of diameter D and length L using a 2D

axisymetric geometry presented in Figure 3. We imposed the

following boundary conditions. The membrane (CDEF in
Figure 3) carried a surface charge Σ, n·(−ε▽V) = Σ, and was
impermeable to ions, n·N± = 0. Far from the pore in the radial
direction (BC−FG), we imposed a symmetry condition,
n·(−ε▽V) = 0; n·N± = 0. Also, we required that both ion
concentrations relaxed toward the bulk salt concentration far
from the pore in the axial direction (AB−GH), c± = cs, and we
imposed a potential difference between the two reservoirs, V =
ΔV/2 on AB and V = −ΔV/2 on GH. In order to limit finite
size effects, we imposed that the size of the reservoirs was much
larger than the pore diameter, the Debye length, and the
Dukhin length. Furthermore, in order to correctly describe the
EDLs, we also took care that the mesh size was smaller than the
Debye (λD) and Gouy−Chapman ( GC ∝ |Σ|−1, see ref 18 and
Methods) lengths close to the charged walls. Consequently, the
range of surface charges and concentrations accessible was
limited because the ratio Du/ GC could not be too large. The
conductance G is given by the electric current across the pore
(integral of the electric flux e(N+ − N−) over any cross-section
of the system) divided by the imposed potential difference.
Figure 4 shows the predicted conductance as a function of

the salt concentration and pore diameter. Altogether the
numerical results do fully reproduce the experimental
observations: ion conductance in nanopores strongly departs
from bulk behavior in the low concentration regime, showing a
saturation and a weak dependence on the pore size in this
regime. Furthermore the existing prediction by Hall22 in eq 1 is
found to grossly underestimate the conductance for small
concentrations, although entrance effects are allegedly taken
into account to obtain this expression.

Going further, it is interesting to plot the contour lines of the
electric potential for this geometry. Figure 5 compares the

electric map without (a) and with (b) a surface charge inside
the pore. This shows that the surface charge perturbs the
electric field and the corresponding electric current streamlines
deeply outside the pore, well into the bulk of the reservoirs.
The typical extension of this perturbation is given by the
Dukhin length Du introduced above. This highlights that
entrance effects should account for this perturbation in order to
rationalize the numerical and experimental results. We
anticipate that a model of the transport, discussed below and
taking into account this effect, is able to reproduce the
numerical results obtained in Figure 4.

Theoretical Model: Access Effects Revisited. We now
present a model describing these results. Because of the 3D
geometry of the nanopore, it is not possible to obtain an exact
analytical solution for the conductance. However, it is possible
to develop an approximate model, which captures the main
mechanism associated with the field lines perturbation outside
the pore due to surface conduction effect inside the pore.
A missing point in the previous analysis is that the surface

conduction induces a strong perturbation of the electric field
lines and corresponding electric current streamlines outside the
nanopore as highlighted in Figure 5, over an extension given by
the Dukhin length Du. Surface transport of ions requires that
current and ions should be supplied within the diffuse interface
to obey charge conservation, thus bending the electric
streamlines toward the pore surface. This mechanism was

Figure 3. Axisymetric geometry of the pore with diameter D and
length L used for the numerical resolution of the Poisson−Nernst−
Planck equations using a finite-element solver (COMSOL). (CDEF)
represents the membrane boundaries; the electric potential drop is
imposed between equipotentials (AB) and (GH).

Figure 4. Pore conductance versus (a) salt concentration for Σ = 20
mC/m2 and various pore diameters; (b) pore diameter for Σ = 5 mC/
m2 and various salt concentrations. Dashed lines are predictions using
eq 1, while solid lines are predictions of the spatially extended surface
conduction model, eq 15. In this equation, α = 2 as proposed by Hall22

and β is fixed to β = 2 so as to obtain the best agreement.

Figure 5. Contour lines of the electric potential across a typical pore
(L = D = 100 nm) (a) without surface charge and (b) with surface
charge (Dukhin length Du ∼ 3D).
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pointed out by Khair and Squires in a simple semi-infinite
geometry with a step change in the surface conductance15 and
is highlighted in writing the condition for conservation of
electric current at the surface of the pore. This imposes the
following condition on the normal and tangential electric field15

κ κ= ∂
∂

ΘE
z

z E[ ( ) ]b n s z (7)

at the surface of the pore (r = D/2); n is the normal to the pore
surface and z is the coordinate along the pore length; Θ(z) is
the Heaviside step function along the length of the pore (Θ(z)
= 0 for z < 0, z > L and Θ(z) = 1 for 0 < z < L). Note that this
boundary condition (BC) introduces naturally the Dukhin
length as a spatial variation for the field in the z direction. This
BC complements the bulk transport equation, ▽·E = 0, which
follows from current conservation (j = κbE and ▽·j = 0).
Unfortunately, these equations cannot be solved analytically,
even for a simple planar situation as considered by Khair and
Squires.15

However, some scaling estimate can be extracted, providing
the leading behavior. For simplicity, we now focus on one side
of the pore and will add up the two sides in the end. A difficulty
encountered with the above equation lies in the step
discontinuity of the surface conduction at the entrance, which
thus acts as a current sink. However, this is the source of the
coupling between bulk and surface transport. Indeed the above
BC at the surface of the pore, eq 7, can be rewritten as

κ κ δ κ= + Θ ∂
∂

E z E z
z

E( ) ( )b n s z s z (8)

for r = D/2 with δ(z) the Dirac distribution.
Now we consider an iterative solution to the equations for

the electric field. In the previous parts above, one has neglected
this effect and we denote as E(0) the corresponding solution for
the electric field, including the access effects discussed by Hall
and others.21,22,25 We write accordingly the electric field as E =
E(0) + δE. Now, keeping only the most singular part of the BC
on the electric field, the above BC for δE is to lowest order

δ δ≃E E z( )n Du z
(0)

(9)

for r = D/2, z = 0, and complementing the bulk equation▽·δE
= 0. This corresponds to the electric field created by an annulus
located as z = 0, with radius r = D/2 (at the mouth of the pore),
with a line charge

λ = = =E r
D

z(
2

, 0)an Du z
(0)

(10)

(normalizing the fictitious dielectric constant to unity, for
simplicity). The solution for δE can then be written as

∫δ λ δ δ
π

′ ′
′

= ′ ′ − −
| − |

⎜ ⎟
⎛
⎝

⎞
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r r
r r

r z r
D

( ) d ( )
2 4an 3 (11)

The corresponding supplementary contribution to the electric
current writes in the bulk

∫δ κ δ κ= ∼S EI d r Q( )b b (12)

with Q = 2πDλan the total charge of the annulus.
At this stage, we will leave the formal solution and extract the

main scaling behaviors. According to the considerations by
Hille21 and Hall,22 the typical electric field Ez

(0) at the entrance
is fixed by the voltage drop outside the pore, ΔVout, over a

distance given by the diameter of the pore. Accordingly, one
has Ez

(0)(r = (D/2), z = 0) ∼ ΔVout/D and the total charge of
the annulus writes Q ∼ DuΔVout (reminding that the fictitious
dielectric constant is set to unity).
Gathering the above results, one can deduce the supple-

mentary contribution to the electric current as

δ κ κ∼ Δ ∼ ΔI V Vb Du out s out (13)

We write this result as δI = βκsΔVout with β as a numerical
constant.
This is a quite counterintuitive result, showing that surface

conductance effects do alter the electric current outside the
nanopore, deep in the bulk, as pointed out by eq 11. It is
however in direct agreement with the qualitative picture by
Khair and Squires15 and with Figure 5, which shows that surface
conduction effects within the pore do extend spatially outside
the pore over a “healing length” given by the Dukhin length Du.
From the above analysis, one may add up the various

contributions to the electric current in the bulk as I = I(0) + δI,
giving

ακ βκ= Δ + ΔI D V Vb out s out (14)

thus showing that the access conductance outside the pore
depends directly on the surface conductance inside the pore:
Gout = ακbD + βκs. After some straightforward manipulations,
the expression for the global conductance of the nanopore is
then found as

κ
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where we recall that Du = κs/κb is the Dukhin length. This
equation is one of the main results of this paper. Interestingly,
comparing eqs 15 and 4, the above result can be reinterpreted
in terms of an increased apparent electric pore size, given by
Dapp = D + β★ Du (with β★ = β/α). The latter originates in the
access conductance oustide the pore, Gout, which can be
rewritten as Gout = α κbDapp, which is in line with Hille and Hall
result,21,22 but with the bare size replaced by the apparent
electric size Dapp. Some limiting behavior of the above results
are also interesting to discuss. In the limit of large Dukhin
lengths Du ≫ D, which occurs for low salt concentration, cs →
0, and/or large surface charge |Σ|, the conductance behaves as

κ
π β

→ ∞ = +
−⎛

⎝⎜
⎞
⎠⎟G

L
D

( )
4 2

Du s

1

(16)

Therefore the present mechanism indeed predicts a saturation
of the conductance for small concentration, which stems from
the fact that Dapp ≫ D in this limit. Furthermore the
conductance in this limit is shown to depend only on the
aspect ratio L/D of the pore, but not explicitly on the diameter
D. In a counterintuitive way, small pores can conduct as
efficiently as large pores!

Comparison with Numerical Results.We have compared
the above predictions with the results of the full numerical
calculations described above. Equation 15 is plotted in Figure 4
against the numerical results. We note that in this plot the
surface conductance is calculated independently as a function of
the surface charge, using theoretical expression of the nonlinear
Poisson−Boltzmann framework (see ref 18 and Methods) and
is not a free parameter. We fixed α = 2 as suggested by Hall22
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and Kowalczyk et al.;25 The only remaining free parameter, β,
was tuned to β = 2 in order to obtain the best match.
Therefore, the full numerical calculations indicate that β★ = β/
α = 1. Consequently, the apparent electric pore size simplifies
to Dapp ≃ D + Du. Overall the prediction of eq 15 yields an
excellent match with the results of the numerical calculations,
thus demonstrating that the above approach does capture the
physical mechanism at play.
Of course, the previous model contains some simplification

for charge transport, leaving aside, for example, the detailed
single ion chemical equilibrium and concentration polarization.
However, these effects are included in the full numerical
description, and it is therefore quite remarkable that the simple
electric conduction model above is able to reproduce
quantitatively numerical results for ion transport.
Comparison with Experimental Results. Having now a

physically relevant picture for the electric conduction in a
nanopore, we can come back to the experimental results
(presented in Figure 2). In Figure 6, the measured conductance

is compared with eq 15. We used α = β = 2, as previously
determined by numerical calculations, and the bulk con-
ductivity κb measured independently. The only remaining free
parameter, κs, was tuned to κs = 0.8 nS to obtain best
agreement. Using the approximate expression Du = κs/κb ≈
(|Σ|/e)/(2cs) (see Methods), this corresponds to a surface
charge |Σ| ≈ 11 mC/m2, compatible with previous experimental
values.29,30

As seen in Figure 6, several key features observed in the
experimental results such as a transition from bulk conductance
dominated regime to surface conductance dominated regime
and a saturation of the conductance at low salt concentration
are well predicted by eq 15. Overall, the agreement between the
predicted value and experimental results is good. A slight
deviation at intermediate salt concentrations is observed for
140 nm diameter, which might be attributed to a conical shape
observed in 140 nm diameter pore. The change in the

conductance as a function of pore diameter is shown in Figure
7 along with the prediction by eqs 1 and 15. For a high salt

concentration of 0.1 M KCl, the experimental data are in
excellent agreement with the predictions by both equations,
confirming the dominance of bulk conduction at this salt
concentration. But for a low salt concentration of 0.1 mM only
eq 15, which takes into account both surface conductance and
access effect, exhibits good agreement with the experimental
data. Furthermore the conductance depends weakly on the
pore size and is roughly 1 order of magnitude larger than what
predicted if one ignores surface conduction contribution to the
access effect.

Conclusions. In conclusion, we have shown that the
transport of ions in solid-state nanopores exhibit complex
features, which strongly depart from what is observed in
nanochannels. The three-dimensional nature of the system
couples to the surface conduction inside the nanopore to
induce unexpected electrical access effects that cannot be
neglected. This is shown to lead to an anomalously large ion
conductance at small ion concentration and/or large surface
charge. We developed a simplified analytical model for the
conduction in nanopores, which provides a very good
agreement with both numerical calculations of the full transport
equations and with experimental results. This supports the idea
that ion transport is strongly perturbed outside the pore over a
healing length given by the so-called Dukhin length, Du = κs/κb
the surface to bulk conductivity ratio, in order to meet ion
current conservation at the entrance of the nanopore.15

Altogether the results can be interpreted in terms of an
apparent electric diameter Dapp of the nanopore, which is the
sum of the bare geometric size of the pore and the Dukhin
length

= +D Dapp Du (17)

(using α = β as obtained numerically). This apparent size of the
pore is thus controlled by electric entrance effects whenever the
Dukhin length Du is large compared to the bare geometric size
of the nanopore. This is quantified by the Dukhin number, Du
= 4 Du/D, which, on top of geometric scale D of the nanopore,
involves physicochemical parameters such as the surface
conductivity/surface charge of the pore. As a simple rule of
thumb, this Dukhin number can be interpreted as the ratio
between the number of surface charges on the nanopore surface
to the number of bulk charges that it contains; Du ∼ Nsurface/
Nbulk with Nsurface = (|Σ|/e)(πDL) and Nbulk = 2cs(π/4)D

2L,
where Σ is the surface charge density, and we used the
Poisson−Boltzmann estimate for the surface conductivity (see

Figure 6. Comparison between the measured conductance and the
predictions by eq 1 (dashed line) and eq 15 (solid line), in nanopores
with different diameters of (a) 140, (b) 250, (c) 430, and (d) 520 nm.
The only free parameter to fit all experimental data is the surface
conductance, which was fixed to κs = 0.8 nS to obtain best agreement
(corresponding to a surface charge |Σ| ≈ 11 mC/m2) . A good
agreement between the measured conductance and predicted value is
observed.

Figure 7. Conductance versus pore diameter at salt concentration of
(a) ∼0.1 M and (b) ∼0.1 mM (exact values were deduced from bulk
conductivity measurements). The dashed line is the predicted
conductance by eq 1, while the solid line is the predicted conductance
by eq 15. Values of the parameters are identical to Figure 6.
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ref 18 and Methods). This clearly points to a surface to volume
balance. Accordingly the entrance effects reported here will lead
to anomalously large ion transport whenever surface charge
dominate over the bulk ones (large Dukhin number). As
highlighted in eq 16, the conductance in this regime only
depends on the aspect ratio of the nanopore, but not directly
on the bare geometric diameter D; for a fixed aspect ratio, small
pores conduct as efficiently as large pores!
Such a situation of large Dukhin number will occur for highly

charged and very small nanopores, which is the case of most
biological transmembrane systems, even for relatively large salt
concentration. For example, considering the alpha-hemolysin
proteinic channel, at neutral pH and for isotonic conditions
(e.g., 150 mM NaCl), the number of surface charges can be
estimated to be twice as large as the number of bulk ones in the
channel,31 so that the Dukhin number is substantially larger
than one (Du ∼ 2). Accordingly, entrance effects are expected
to play a central role in the ionic transport through this channel,
as accounted for by our prediction in eq 15. Furthermore, the
electric entrance effects should be also taken into account when
interpreting quantitatively translocation experiments of nano-
particles and molecules through solid-state or biological
nanopores. Indeed our result show that the global conductivity
of the pore involves information over a region which extends
on a size Dapp, which can be much larger than the bare
geometric size of the pore. Consequently, the sensitivity to
translocation events, which is usually measured via ion current
variations as discussed in the introduction, should therefore
integrate the corresponding information outside the pore. In
particular, one expects that charged molecules or nanoparticles
will follow the perturbed electric field lines at the entrance of
the pore. Their influence is accordingly expected to be
monitored far beyond the pore entrance, thus limiting the
spatial resolution of such a technique. This is particularly
relevant in view of the recent efforts to use ultimately thin
nanopore devices such as pierced graphene sheets.28,32

Methods. Nanopore Fabrication and Experiments. Nano-
pores are fabricated on silicon nitride (SiN) membranes
purchased from Silson Ltd. (Northampton). The microchip
consists in a rectangular silicon nitride membrane (40 μm × 40
μm) in a square silicon supporting frame (7.5 mm × 7.5 mm).
The thickness of the membrane is set to 100 nm.
A dual-beam column (ZEISS-GEMINI), Focused Ion Beam

(FIB)/Scanning Electron Microscope (SEM), for the micro
drilling of the silicon nitride membrane is used. FIB columns
are able to focus highly energetic ions (typically GaC) to small
spot sizes on the order of 5−20 nm. The interaction between
energetic ions and the silicon nitride membrane results in
localized material removal due to ion sputtering interactions.
The membrane is placed at a position where both electron and
ion columns can simultaneously image the same region of the
sample, which greatly simplifies the location of the hole drilled
by the FIB. Standard parameters for hole drilling are: 1 pA for
the ion beam current with a FIB columns voltage set to 35 keV.
Time of drilling is accordingly modified to obtain nanopores
with different diameters (140, 160, 250, 430, and 520 nm).
The image of transmission electron microscopy (TEM-

TOPCON002B) is employed to determine diameter and shape
of each nanopore as shown in Figure 1c. The pores with a large
diameter (250, 430, and 520 nm) has a cylindrical shape, but
nanopores with a diameter of 140 and 160 nm are slightly
conical (±10 nm in diameter).

Conductance Measurements. To measure ion conductance
in a single nanopore, a flow cell is built with polyether ether
ketone (PEEK), and the SiN membrane with a nanopore is
inserted between two half-cells and sealed with O-ring (Figure
1). Before the membrane is placed into a flow cell, the latter is
cleaned with acetone, isopropanol, and deionized water for 10
min each. Potassium chloride (KCl) solutions (pH 6) with
varying concentration are prepared by serial dilution of 1 M
KCl solution with deionized water (18.2 MΩ·cm, Millipore).
The bulk conductivity of prepared KCl solutions is measured
with conductivity meter (CHI 2300, HANNA Instruments)
right before the conductance measurement with a nanopore.
Test liquids are degassed before each measurement to prevent
any nucleation of nanobubbles inside a pore. During the
measurement, a transmembrane voltage between −0.1 to 0.1 V
is applied with 0.01 V step using Ag/AgCl electrodes immersed
in each half-cell. The resulting electrical current through the
membrane is measured with the same Ag/AgCl electrodes
connected to the amplifier at an acquisition rate of 10 kHz
using LabView program. Conductance is calculated by linearly
fitting voltage-current curve.
The experimental data for the measured conductance over a

wide range of salt concentrations in each nanopore are shown
in Figure 2 of the main text, while the representative voltage-
current curve for 140 nm diameter nanopore is shown in the
corresponding inset. In all nanopores studied, voltage−current
curve exhibits a linear relationship in the transmembrane
voltage range between −0.1 and 0.1 V. Conductance
measurements performed for different pH value do not show
significant variations.

Poisson−Boltzmann Calculation of the Surface Con-
ductivity. In order to compare the theoretical prediction eq
15 with the numerical results, one has to compute the surface
conductivity κs, or equivalently the Dukhin length Du = κs/κb,
as a function of surface charge Σ, salt concentration cs and pore
diameter D. Within the Poisson−Nernst−Planck framework,
the electric current Ie through a charged cylindrical channel can
be written as the integral of the electric flux over the channel
cross section

∫μ= ++ −
I
E

e c c S( )de

z

2

S (18)

where Ez is the electric field applied along the tube axis and
other quantities have been defined in the main text. This
current can be decomposed as the sum of bulk and surface
contributions

π κ π κ π κ= + = +
⎛
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⎞
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D

D
D4 4

1
4e

z

2

b s

2

b
Du

(19)

In the absence of surface charge, c+ = c− = cs everywhere. Using
eqs 18 and 19 with κs = 0, one immediately gets κb = 2e2μcs.
The Dukhin length can then be computed as

∫
π

= + −+ −

⎧⎨⎩
⎫⎬⎭

D
D c

c c S
4

2
( )d 1Du 2

s S (20)

The ion density profiles inside the channel were computed
assuming a Boltzmann distribution, c± = cse

∓eV/kBT, after we
solved numerically the nonlinear Poisson−Boltzmann (PB)
equation for the electric potential V
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Going further, it is possible to derive an approximate expression
for the Dukhin length under the assumption that the EDL
width is small as compared to the channel diameter, so that the
potential is similar to the one near a plane wall in a semi-infinite
solution. Therefore, we will use the nonlinear PB solution in
this situation, considering that the potential vanishes at infinity.
Consequently, the potential reads

γ
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where x is the distance to the wall, and γ is given by

γ
λ λ

= − + + 1GC

D

GC
2

D
2

(23)

with the Gouy−Chapmann length GC = 2εkBT/(|Σ|e) (see ref
18). Using eq 20 and this expression for the electric potential,
the Dukhin length can be computed as

γ= |Σ| e
c
/

2Du
s (24)

with γ given in eq 23. For typical experimental surface charges
with |Σ| ∼ 10 mC/m2, this approximate expression matches
almost perfectly the exact numerical values (<1% error). This
can be understood since, in this regime of large surface charge,
most of the EDL charge is contained in the Gouy−Chapmann
region of width GC ∼ 4 nm ≪ D. The wall curvature and EDL
overlap can therefore be neglected. As a matter of fact, for low
salt concentrations, where the effect of surface conduction
becomes significant, one has GC ≪ λD, and γ ≈ 1.
Consequently, the even simpler expression Du = (|Σ|/e)/(2cs)
is perfectly suited to fit the experimental data.
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