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Ohmic electromechanical dissipation in nanomechanical cantilevers
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We study the contribution of ohmic dissipation to the mechanical damping of nanoresonators. This damping
occurs when DC voltage is applied to a resistive resonator, because the mechanical motion modifies the associated
capacitance, thus inducing a dissipative current. Silicon carbide nanowire resonators were studied as a function of
applied voltage and their geometrical environment. Nanometric positioners were used to control and continuously
modify the position of the resonator with respect to counter electrodes. The experimental results are shown to be
in agreement with an electromechanical model developed here, which allows for the establishment of a universal
formula for the lower dissipation limit of a nanoresonator in its capacitive environment.
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I. INTRODUCTION

Resonating nanoelectromechanical systems (NEMS) have
been intensively studied as sensors due to their very high sen-
sitivity to local environments.1–3 NEMS based measurements
often consist of tracking the frequency shifts of the resonator
when it is perturbed by external forces. The accuracy with
which the frequency is measured is inversely proportional to
dissipation4,5 which also controls power consumption. The
search for high quality factor resonators has lead to much work
on the dissipation mechanisms in such resonators. Though
fundamental limits have been proposed for the intrinsic
dissipation of nanocantilevers in terms of thermoelastic damp-
ing and phonon-phonon coupling,6–8 additional experimental
dissipation processes can increase the intrinsic damping, such
as air friction,9 clamping losses,10 external electrical circuits
coupling,11,12 and ohmic dissipation. The latter is the subject
of this article. Ohmic losses, or “electrostatic damping,” are
the results of the current induced in a series resistance by the
electrostatic loading of the capacitance made by the oscillating
resonator and its environment.

The role of the electrical current in the dissipation
of electromechanical resonators has been discussed for
piezoelectrical systems where charge flow is induced by the
transducer deformation (see Ref. 13 for a list of references).
This process is termed “passive shunt damping,”14 where
an external impedance dissipates the piezoelectrical induced
current. In nanomechanical devices, a comparable model can
be found in Ref. 15, where the origin of the current flow is
not piezoelectricity but the capacitance of the resonator with
the environment under bias voltage. DC voltage is often used
in NEMS devices to tune the mechanical resonances through
the capacitance to higher16 or lower17 frequencies, but it can
also increase the damping.18 Similar behaviors are found in
transistor configurations, where the gate voltages needed for
the transconductance induce static charges that can lead to
significant dissipation.

We report experimental results on a silicon carbide single-
clamped resonator where the electrostatic damping dominates.
The results are analyzed with the aid of an analytical treatment
of resonators capacitively coupled to their environment.
Thanks to a bottom-up approach and in situ nanomanipulation,
the damping was explored with respect to the capacitive

environment as well as the bias voltage. A wide survey of
results in the literature also shows how the dissipation varies
with the relevant dimensionless parameters, the time ratio
T and coupling strength β (see below). Our model sets a
universal framework for electrostatic damping in micro- and
nanoelectromechanical systems.

II. EXPERIMENTAL SETUP

A silicon carbide (SiC) nanowire resonator was studied
in a home-built high vacuum system (∼10−9 Torr) including
an in situ scanning electron microscope (Orsay Physics,
e-CLIPSE) for imaging and measuring the mechanical res-
onance frequencies and amplitudes. The nanowire was glued
onto a tungsten support tip which was manipulated near two
types of counter electrodes. A rather full set of experiments
were carried out with a gold counter electrode and a reduced
set with a shorter SiC nanowire glued on a second tungsten tip
(Fig. 1). Both the nanowire tungsten support and the counter
electrodes were fixed on Attocube positioners (ANPxyz50)
with XYZ relative displacement up to a nanometer precision.
The SiC nanowire resonator was 200 μm long and 250 nm
thick. The tungsten tip was point soldered onto a wire heating
loop used to anneal the nanowire resonator up to 800 ◦C.
The annealing was used to degas the nanowire but it also pro-
gressively reduced its electrical resistance.19 The resonances
were excited by piezoelectric actuation.

Two methods were used to estimate resistance values. First,
the apex of the nanowire electrode was brought into contact
with the gold counter electrode for two point measurements.
This is subject to unstable and compromising contact resis-
tances, which can even be nonlinear. The resistance R of the
nanowire was mostly estimated using a technique combining
field emission and the tuning of the mechanical resonances by
applied voltage.20 Field emission occurred when the electric
field was high enough to extract electrons from the apex of
the resonator. The resulting DC current IFE ∼ 1 nA induced a
voltage drop �V along the nanowire. The voltage drop reduced
the tuning, which, knowing the emission current, can be used
to estimate the resistance. This is detailed in Fig. 2 and its
caption. Typical values for R were in the range of 1–10 G�. (A
summary of resistance evolutions and measurements is given
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FIG. 1. (Color online) SEM images of the silicon carbide
nanowire resonator (on the left in both images) on its tungsten tip
in front of (a) the gold electrode and (b) the short nanowire.

in Table II.) Another important parameter is the capacitance
and its dependence on the position of the nanowire. This will
be discussed throughout the rest of the article.

III. MODEL

Consider the equation of motion for the first mode of the
nanowire where x is the amplitude at the apex. The equation
of motion linearized around the equilibrium position is:

me

d2x

dt2
+ k(VDC)x = C ′VDCVNW, (1)

where me is the effective mass and k(VDC) the restoring force
for the first mode. C(x) is the nanowire/electrode capacitance

FIG. 2. (Color online) First mode resonant frequency (pointing
left triangles, left axes) and field emission current (pointing right
triangles, right axes) as a function of the applied DC voltage. The
resonant frequencies vary linearly with the applied voltage for lower
voltages, i.e., 100–200 V (continuous line). When field emission
occurs, the resonant frequency shifts from the linear dependance. The
voltage shift �V corresponds to the voltage drop along the nanowire.
The resistance is �V/IFE.

for a given equilibrium position as a function x, VDC is the
applied DC voltage to the tungsten tip (with the counter
electrode grounded), and VNW is the time-dependant voltage
along the nanowire (such that VDC + VNW is the voltage at
the apex). The force in Eq. (1) comes from the derivative of
the electrostatic potential energy C(x)(VDC + VNW)2/2 with
respect to x. VNW is typically much smaller than VDC. A more
detailed definition of the restoring force including DC voltage
tuning could be given, but here a simple phenomenological
form is used in order to concentrate on electrostatic dissipation.
Pure mechanical dissipation is also neglected in this section.
The equation for VNW, including the flow of electrical current
through the resistive nanowire to the displacement-dependant
capacitance C(x), is

− VNW

R
= VDCC ′ dx

dt
+ C

dVNW

dt
, (2)

where C ′ is the derivative of C with respect to x.
Equations (1) and (2) can be combined to give a third-order

equation for the displacement:

T

ω0

d3x

dt3
+ d2x

dt2
+ ω0T (1 + β)

dx

dt
+ ω0

2x = 0, (3)

where the two dimensionless parameters T and β have been
introduced:

T = RCω0

β = (C ′VDC)2k−1

C
.

The time parameter T is the ratio of the mechanical and
electrical time constants with ω0 the resonant angular fre-
quency given by ω0

2 = k/me. β, the “coupling strength,”15

is a second useful parameter, which is the ratio between the
motional capacitance Cm (discussed below) and the electrical
capacitance C.

The characteristic polynomial P(z) associated with Eq. (3)
gives complex solutions, i.e., damped oscillations where
frequencies and damping rates correspond to the imaginary
and real parts, respectively. As for a harmonic oscillator
with damping, we introduce the electrostatic damping rate as
�es = 2�e(z±), where z± are the complex solutions of P(z).
For β � 1, z± can be expressed to first order as

z+ = iω0 + ω0
iβT

2T − 2i
and z− = z+. (4)

One gets a universal expression for the electrostatic damp-
ing rate:

�es = βω0
T

1 + T 2
. (5)

A balance of energy argument was used to derive a similar
expression in Ref. 15, which, however, underestimates �es

by a factor of 1/π . For completeness to first order in β, the
angular resonance frequency also varies with T and is given
by �m(z±). The damping rates and frequencies for the low T

(LT) and high T (HT) regimes are:
for T � 1

�LT = βω0T = R(C ′VDC)2

me

(6)

ωLT = ω0 + R2 ω0C(C ′VDC)2

2me

, (7)
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TABLE I. Motional dipoles for the equivalent electrical circuit.
α ≡ C ′VDC.

Electromechanical representation Electrical lumped model

qC C ′VDCx

Lm m/α2

Rm �/α2

Cm α2/k

for T 	 1

�HT = βω0

T
= G(C ′VDC)2

meω0
2C2

(8)

ωHT = ω0

√
1 + β − G2 (C ′VDC)2

2meω0
3C3

, (9)

where G = 1/R is the conductance. At low T [Eqs. (6)18

and (7)], the charges move along the resonator as a dissipative
current. At high T [Eqs. (8) and (9)], the large RC filtering
blocks the dissipative current and consequently affects the
restoring force only. This force is characterized by constant
voltage in the lower limit and by constant charge in the higher
limit. In the low T regime, the damping rate is proportional
to the resistance as expected for ohmic losses. In the high T

regime, the effect of RC filtering is less intuitive since the
dissipation increases with the conductance G of the cantilever.

The electromechanical system has an equivalent AC circuit
where the mechanical components are represented as motional
dipoles {Rm,Lm,Cm} (see Table I and Fig. 3). It is similar
to the Butterworth-Van Dyke circuit for quartz resonators.21

For such resonators, the proportionality between charge and
displacement is a physical property of piezoelectric materials,
while here it is the result of static voltage loading of the
position-dependant capacitance. In the low T regime, the
usual piezoelectric relation between charge and displacement
is replaced by qC = xC ′VDC.

FIG. 3. Equivalent circuit for a single clamped resistive cantilever
in a capacitive environment. The position x of the cantilever is
represented by the charge q on the motional capacitance Cm upper
plate. Rm corresponds to a purely mechanical damping neglected in
the discussion of the model. R is the resistance of the cantilever and
C the total capacitance with environment. Re is the resistance of the
counter electrode (discussed below).

IV. EXPERIMENTAL RESULTS

We concentrate on experimentally validating Eq. (6), which
is for electrostatic damping in the low T regime. The 7 kHz SiC
nanowire was well adapted for this purpose. These resonators
have in general two transverse polarizations for each mode.
The first set of experiments was carried out with the gold
electrode, as shown in Fig. 1(a). With a good axial alignment
of the nanowire, only the polarization transverse to the image
plane allowed a full range of measurements. The needed RC

time constant was determined from the exponential decay of
the field emission current to a superimposed square voltage
modulation (∼1 Hz). The frequency cutoff, 1/2πRC ≈
50 kHz, was at least one order of magnitude higher than the
resonance frequency.

Frequency spectra of the mechanical resonances were
measured using the SEM electron beam in spot mode focused
on the edge of the nanowire. The setup is similar to that in
Ref. 22, and a lock-in SRS830 was used for the reconstruction
of spectra from the secondary electron detector signal. In order
to avoid self-sustained oscillation of the nanowire induced by
the electron beam,23 the electron beam was focused close to
the clamping of the nanowire. The damping rate and resonant
frequency were both estimated from measurements of the
resonator amplitude and the phase shift with respect to the
piezoelectrical driving signal (see Fig. 4).

The first experiment was to study the influence of the
nanowire/electrode geometry on damping through the spatial
derivative of the capacitance. C ′ was varied by changing
the relative angle between the nanowire and the electrode.
The angle was varied from θ = 0◦ to θ = 90◦ (see Fig. 5)
for a set voltage of 10 V and a constant apex/electrode
distance (d = 39.7 μm ± 1 μm). At the resonant frequency,
the amplitude is typically 1 μm, giving a capacitive current
smaller than 1 pA. The important result is that the dissipation
was a minimum when the oscillation of the nanowire was
parallel to the electrode surface (θ = 90◦) and increased
as the oscillation became more perpendicular, reaching a
maximum at 0◦. Though a precise modeling of C(x) is rather
complicated for a wire/electrode geometry, it is clear that
the parameter that modifies it mostly during an oscillation is
the apex/electrode distance. This distance varies strongly for
perpendicular oscillations and weakly for parallel oscillations.

FIG. 4. (Color online) Mechanical resonance of the nanowire far
from the counter electrode (d > 500 μm) without applied voltage.
The electron beam was focused on the nanowire to detect amplitude
and phase shift of the resonance. The intrinsic frequency for the first
mode is 7201.04 ± 0.02 Hz with a damping rate of 4.1 ± 0.4 s−1,
giving a Q factor of 11000 ± 1000. Amplitude is in normalized units
(n.u.).
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FIG. 5. (Color online) Damping rate from fitting the phase of the
resonance spectra and by using the static bending method (see text).
The DC voltage was 10 V and the nanowire/electrode distance was
d = 39.7 μm. When θ = 90◦, the nanowire was perpendicular to the
electrode, and when θ = 0◦ the nanowire and the electrode surface
were parallel. The resonances were excited by piezomotive actuation.
The error bars correspond to the electrostatic damping from Eq. (6)
with R = 1.6 G� and R = 2.2 G�, with a residual damping rate of
�ex = 5 s−1. C ′ is estimated from an image analysis.

It is possible to give a quantitative estimate of C ′ from
the image analysis of the bending xb of the nanowire with the
applied DC voltage VDC. This was done almost simultaneously
at each angle where a resonance was measured. Using the
balance between mechanical restoring force and electrostatic
force, C ′ is given by

meω0
2xb = 1

2C ′VDC
2. (10)

The restoring force acting on the static deflection is assumed
to be the same as for the first mode. This is shown to be
a good approximation, because the experimental nanowire
shape under static deflection fits well to the first mode shape.
The nanowire mass is estimated using the bulk SiC density
and measured length and radius. From Eqs. (6) and (10), the
damping rate can be expressed as

�t = �ex + 4meR

(
ω0

2xb

VDC

)2

, (11)

FIG. 6. (Color online) Damping rate from resonance spectra
(squares). The electrostatic damping from Eq. (6) is plotted for
R = 1.47 G� (down triangle) and R = 1.32 G� (up triangle). For
each applied voltage, as the nanowire deflects, the tungsten nanowire
support is moved to keep the local geometry of the apex/electrode
constant (dashed circle line). An optimal fitting agreement is found
for a nanowire resistance R = 1.39 G�, a residual damping rate
�ex = 3.7 s−1, and an effective mass me = 5.10−15 kg. Quadratic
model shows a qualitative agreement with the data (solid line).

where �ex is introduced to describe the extra sources of
dissipation. Figure 5 shows that there is a good agreement
between the measurements of the damping rate and the static
bending converted using Eq. (11) for R = 1.9 G�, in support
of the electrostatic damping model. Note that for this work, �es

generally dominates �ex. There is a low value of �t at θ = 90◦.
In principle, one expects a cancellation of the electrostatic
damping for a perfectly symmetrical capacitive environment.
Complementary work in a near-field geometry suggests that
the effective cancellation of the capacitance derivative is not
simple.

The second experiment was to measure the effect of a
varying DC voltage on the dissipation with C ′ kept constant.
The difficulty was that the nanowire bent with the applied
DC voltage, which in turn varied C ′ through the change in the
distance and the angle of the free end with respect to the counter
electrode. To compensate for this effect, the tip was moved
laterally at each DC voltage to keep both the distance and the
relative angle constant. With this precaution, the dependance
of the dissipation on voltage is quadratic as shown in Fig. 6

TABLE II. Nanowire resistance evolution with annealing events. Each annealing lasts 1–3 min with an increasing operating temperature
from 600 ◦C for the first annealing to 800 ◦C for the last.

Number of annealing Resistance (G�) Measurement

0 21 resonant frequency shift under field emission
3 6.5 resonant frequency shift under field emission
12 1.9 resonance width vs estimation with static deflection
13 1.39 resonance width vs estimation with static deflection
14 <1 resonant frequency shift under field emission
14 0.5 IV apex/electrode contact
14 1 resonance width vs estimation with static deflection

(serial resistance of the two nanowires)
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FIG. 7. (Color online) Frequency tuning with applied DC voltage
for the two polarizations of the first resonant mode (x‖ diamonds, x⊥
squares). The difference in the curvatures comes from the electrostatic
pull-in on x‖ [Eq. (13)].

in agreement with Eq. (6). There is also now an excellent
agreement between the damping rate from resonance spectra
and electrostatic damping from static deflection [Eq. (10)] for
R = 1.39 G�. The difference with the resistance found before
is attributed to a resistance change after the annealing between
the two experiments (see Table II).

The second series of experiments shows the influence of
a resistive counter electrode being the shorter SiC nanowire
shown in Fig. 1(b). Before the measurements, an annealing
was carried out, and R was found to be around 0.5 G�.
The nanowires had a large relative tilt angle and were to first
order lying in the image plane. This arrangement allowed for
observation of the two polarizations, sufficiently separated in
frequency, one being approximately transverse to the image
plane, x⊥, and the other approximately parallel to the image
plane, x‖. This was useful as the electrostatic pull-in only

FIG. 8. (Color online) Damping rate from resonance spectra for
the parallel (diamonds) and perpendicular polarization (squares).
Damping rate from the conversion of the bending using Eq. (11)
and a total resistance RNW + Re = 1 G�.

matters for x‖, because, to first order, x⊥ does not change
the nanowire/nanowire distance. A manifestation of this is
the different frequency tuning for the two polarizations with
applied voltage (see Fig. 7):

f⊥ = 1

2π

√
ω0⊥2 − Vdc

2

2me

∂2C

∂x⊥2 (12)

f‖ = 1

2π

√
ω0‖2 − Vdc

2

2me

∂2C

∂x‖2 , (13)

where the electrostatic pull-in makes ∂2C/∂x2
‖ positive while

∂2C/∂x2
⊥ is negative as usual for mechanical tension.

Experimental measurement of damping rate with the
applied voltage shows that the electrostatic damping only
affects the parallel polarization17 (see Fig. 8). An estimation
of the electrostatic damping rate [Eq. (11)] is also plotted with
∂C/∂x‖ from static deflection measurements. There is very
good agreement with resonant damping rate measurements
for R = 1 G�. An important result here is the difference with
the resistance found with the gold electrode. It comes from the
significant resistance Re of the counter electrode that simply
modifies Eq. (2) as

− VNW

R + Re

= VDCC ′ dx

dt
+ C

dVNW

dt
. (14)

For the low T regime, the resistance is simply replaced by the
serial resistance R + Re.

FIG. 9. (Color online) Normalized dissipation 1/Qβ as a function
of the time constant ratio T = ω0RC for various reported experiments
(logarithmic axes). The continuous line is the universal electrostatic
damping �es/(βω0) from Eq. (4). It sets a theoretical lower limi-
tation (lower region) for the dissipation. The linear increasing and
decreasing slopes correspond, respectively, to the asymptotic regime
calculated in Eqs. (6) and (8). The experimental data are plotted using
quality factor, capacitance ratio β, and time ratio T for bottom-up
(squares) (Table III) and top-down devices (diamonds) (Table IV).
Lassagne 09 () and Steele 09 (�) data correspond to the Coulomb
blockade regime. The ON associated triangles correspond to the
Coulomb peaks when the resonator is in its conductive regime. The
vertical distances from the electrostatic damping lower limit give the
additional source of dissipation.
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TABLE III. Electromechanical parameters for the computation of the normalized damping Q−1/β and time ratio T in Fig. 9 for bottom-up
devices (normal font—parameters given by the authors or accepted(*), italics—estimated from article details). The expressions for β and T

are given in Sec. III.

Group Frequency (MHz) Q me (kg) R (�) C (fF) C ′ (pF.m−1) bias (V) Ref.

This work 0.007 1500 5.10−15 1.4 G 1 1 10
Si NW 1 500 3.10−17 1 T 0.1 1 400
Sazonova 04 55 80 1.10−21 50 k 0.01 4 2.2 24
Jourdan 07 0.005 580 3.10−10 30 M 440 28000 0.5 18
Bunch 07 36 60 1.10−17 10 k 0.2 1000 2 25
Eriksson 08 62 55 3.10−18 100 k 0.005 20 0.1 26

54 22 3.10−18 100 k 0.005 20 18
Lassagne 09 (blocked) 50 400 2.10−21 1 G 0.06 4* 6 27
Lassagne 09 (ON) 50 100 2.10−21 1 M 0.06 4* 6
Steele 09 (blocked) 250 150000 2.10−21 1 G 0.06 4* 1 28
Steele 09 (ON) 250 2900 2.10−21 1 M 0.06 4* 1

V. DISCUSSION

The experimental measurements above have shown the
validity of Eq. (6), which is the low T regime of Eq. (5).
It is important to show its validity over the full range of T ,
which is possible by considering measurements of resonators
described in the literature. A large selection of resonators are
described in Tables III18,24–28 and IV.29–35

It is useful to rewrite Eq. (5) as

�t

βω0
= �ex

βω0
+ T

1 + T 2
. (15)

The experimental values of the normalized damping �t/βω0 =
Q−1/β are plotted as a function of the experimental time
ratio T in Fig. 9. The universal ratio T/(1 + T 2) gives the
lowest possible value for the total dissipation. Notice that
no measurements are below this limit while six approach the
curve, which is strong proof of the validity of our formula.

Other remarks can be made with respect to Fig. 9. First,
the vertical distance to the universal curve gives directly
the additional dissipation due to other mechanisms �ex/βω0.
Second, the electrostatic damping is a maximum when the
mechanical and electrical time constants match (T = 1). In
other words, the highest dissipation occurs when the resistive
current (VNW/R) and capacitive current (Cω0VNW) have
the same weight in Eq. (3). Finally, a useful engineering
benchmark for NEMS devices is a simple formula for the

minimum Q factor due to electrostatic damping:

Qmin = 2

β
. (16)

Thus β appears to be a “damping parameter,” which would
seem to be in contradiction with it being termed a coupling
strength. In fact, it can play either role depending on T , i.e.,
for T 	 1 it functions as a coupling strength in that it shifts
the resonant frequency [Eq. (9)].

Several aspects in the figure should be examined in some
detail. The results in Ref. 18 (Jourdan 07) are noteworthy
because the resonator functioned at low T , the result is close
to the universal curve, and it was the only reference that
showed that electrostatic damping was the main mechanism.
In Ref. 31 (Naik 06), the resonator has a single electron
transistor as counter-electrode, and the damping was varied
by increasing VDC. Our plot shows that a significant part of the
dissipation can be explained by this classical description of
the electromechanical coupling. In Ref. 26 (Eriksson 08), the
quality factor was shown to decrease substantially with VDC.
However, Fig. 9 shows that the associated Q−1/β varied little,
which means that electrostatic damping is not the principal
loss mechanism. It may be related to near-field experiments
with cantilevers oscillating parallel to surfaces where the
electrostatic origin of the dissipation has been demonstrated,
but the exact nature and mathematical formulation is not
clear.36,37

TABLE IV. Electromechanical parameters for top-down devices (normal font—parameters given by the authors, italics—estimated from
article details). Entries with ∗ include the counter electrode resistance.

Group Frequency (MHz) Q me (kg) R (�) C (fF) C ′ (pF.m−1) Bias (V) Ref.

Knobel 03 117 1700 3.10−15 100 k∗ 0.6 30 5 29
Lahaye 04 19.7 50000 1.10−15 70 k∗ 0.03 30 15 30
Naik 06 21.9 120000 6.10−16 200 k∗ 0.4 300 0.1 31

21.9 13000 6.10−16 200 k∗ 0.4 300 10
Truitt 06 11 30000 1.10−15 10 0.05 300 15 32
Kozinsky 06 8.6 2500 3.10−16 10 0.07 80 20 17
Brown 07 0.007 20000 2.10−9 5 100 8000 50 33
Unterreithmeier 09 8.9 150000 2.10−15 >T 1 3000 1 34
Koumela 11 1195 2000 7.10−17 100 k 0.03 250 20 35
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In general there are a few measurements that correspond
to T > 1. References 27 and 28 (Lassagne 09 and Steele
09) concern electromechanical coupling of carbon nanotube
resonators exhibiting Coulomb blockade. The high T regime
is reached because of the large resistances expected in the
Coulomb blockade regime [∼G�, up (Lassagne 09) and
down (Steele 09) triangle]. As the conductance oscillates with
the gate voltage, the equations for electrostatic damping when
T 	 1 describe well the observed damping rate [Eq. (8)] and
frequency shift [Eq. (9)]. Very high quality factors (150 000)
are reported in Ref. 34 (Unterreithmeier 10) with insulating
resonators (R > T�). The corresponding data in Fig. 9
considers a lower value of T , i.e., when R = 1 T�). This
confirms that no dissipative current is induced in the high T

regime. Our recent measurements of �t/β for high purity Si
nanowires (Si NW) with resistances ∼T� fall precisely on
the universal curve.

VI. CONCLUSION

We have experimentally shown that the damping of a
cantilever can be dominated by ohmic losses induced by the
electromechanical coupling between charge and mechanical
displacement. This was done by varying the geometry of the
capacitive environment and the applied voltage in several
dedicated experiments and comparing it to a theoretical
model. The experiments include an original approach for
determining the resonant damping rate using only static
measurements that in turn gives a good estimate of the
cantilever resistance. The developed model is characterized
by a simple universal formula involving two dimensionless
parameters widely applicable to NEMS devices. It is in
agreement with data collected in a wide literature survey and
quantifies the contribution of electrostatic damping to the total
damping.
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