

CAVITATION IN HOMOLOGOUS LIQUIDS: EXPERIMENTAL AND THEORETICAL STUDY

LABORATORY : IN COOPERATION WITH :	Institut Lumiere Matiere Institut Lumière Matière
TEAM(S):	LIQ@INT
CONTACT(S):	CAUPIN Frédéric
CONTACT(S) DETAILS:	frederic.caupin@univ-lyon1.fr / Tel. 0472448565
KEYWORD(S) :	cavitation / nucleation / ultrasound

SCIENTIFIC CONTEXT :

The equilibrium between liquid and vapor, and between liquid and solid are archetypal phase transitions. Because of their first-order nature, the liquid state can persist beyond the equilibrium lines: the liquid can be stretched at negative pressure, or supercooled below the corresponding solid melting point. These states are metastable and the system will return to equilibrium through nucleation of the stable phase: nucleation of vapor or cavitation in the crystallization stretched liquid, in the supercooled region. These phenomena have natural and important technological consequence. For instance, the radiation balance of a cloud is different when the water it contains is a supercooled liquid or ice.

Our group has a long tradition of experiments on metastable liquids, and has developed several theoretical models to understand the experimental results.

Critical cavitation bubble in water at -150 MPa from molecular dynamics simulations [3]

MISSIONS:

The goal of the proposed internship is to systematically investigate cavitation in families of fluids, and interpret the results with a corresponding states analysis. Experimentally, cavitation will be triggered with n-alkanes by a focused ultrasonic wave. The cavitation pressure will be measured using a fiber-optic probe hydrophone [1,2]. Theoretically, we will study a family of interaction potentials. A first approach will involve density functional theory, which will be later complemented by molecular dynamics simulations.

More info at http://ilm-perso.univ-lyon1.fr/~fcaupin/indexeng.html

OUTLOOKS:

Academic or industrial research

BIBLIOGRAPHY:

- [1] A. Arvengas, K. Davitt and F. Caupin, Rev. Sci. Instr. 82 034904 (2011).
- [2] N. Bruot and F. Caupin, Phys. Rev. Lett. 116 056102 (2016).
- [3] G. Menzl et al., PNAS 113 13582-13587 (2016).