HOW TO SEPARATE GASES WITH SOAP BUBBLES?

LABORATORY:	Institut Lumière Matière
IN COOPERATION WITH LiPhy (CNRS-Univ. Grenoble Alpes), société Teclis	
$:$	
LEVEL :	M1 / L3
TEAM(S) :	LIQ@INT
	ONLI
CONTACT(S) :	BIANCE Anne-laure
	BONHOMME Oriane
	LE MERRER Marie

CONTACT(S) DETAILS: anne-laure.biance[at]univ-lyon1.fr / Tel. 0472448228 oriane.bonhomme[at]univ-lyon1.fr / Tel. 0472448558 marie.le-merrer[at]univ-lyon1.fr / Tel. 0472448570

KEYWORD(S): soap films / liquid-gas interfaces / non-linear optics

SCIENTIFIC CONTEXT:

A soap film (fig. a) is a nanometrically thin water layer, covered by surface active molecules called surfactants (the soap molecules), sandwiched between two gas domains. If well designed, it can act as a liquid membrane (fig. b), more or less permeable to the surrounding gas. Their main advantage is that
 contrary to solid membranes. These properties are crucial to new energy-efficient chemical separation processes, currently corresponding to $10-15 \%$ of worldwide energy consumption. Separation devices have to be selective to one of the gas species, and this can be achieved in soap films thanks to the specific adsorption of gas species on the surfactant layer.

MISSIONS :

The objective of the internship is therefore to study this adsorption mechanism, for various gases. Two methods will be used. First, non-linear optics (Surface Harmonic Generation, fig. c) will be used to probe a single liquidgas interface. This technique has the specificity to be highly surface-sensitive, and will allow us to probe gas adsorption and surfactant structure at the interface. Second, we will consider the case of a soap film with two interfaces. The student will use a Thin Film Pressure Balance to explore how the interactions between the facing interfaces are modified by the gas atmosphere.

OUTLOOKS :

The internship is part of the wider project SELFI funded by Région AURA (collab. LiPhy/iLM/Teclis)

