Mesure de la résistance thermique à l'interface carbone-eau

Extraction of the thermal resistance at the carbon-water interface

 

Alessandro Casto, Margherita Vittucci, Fabien Vialla, Aurélien Crut, Fabrice Vallée, Natalia Del Fatti, Francesco Banfi et Paolo Maioli (équipe FemtoNanoOptics), en collaboration avec des collègues de Turin, ont publié un article intitulé "Experimental Optical Retrieval of the Thermal Boundary Resistance of Carbon Nanotubes in Water" dans la revue Carbon.
 
Alessandro Casto, Margherita Vittucci, Fabien Vialla, Aurélien Crut, Fabrice Vallée, Natalia Del Fatti, Francesco Banfi and Paolo Maioli (FemtoNanoOptics group), with colleagues from Politecnico di Torino, published a researcher article entitled "Experimental Optical Retrieval of the Thermal Boundary Resistance of Carbon Nanotubes in Water" in the journal Carbon.
 

 

Une compréhension quantitative et détaillée des mécanismes physiques régissant le transfert de chaleur aux échelles macro et nanométriques est essentielle pour la gestion thermique, le refroidissement des dispositifs, l'optimisation de la conductivité thermique et en science fondamentale. Un paramètre clé dans ce contexte est la résistance thermique d'interface (ou TBR pour Thermal Boundary Resistance), appelée également résistance de Kapitza. La TBR est la résistance qui ralentit le flux de chaleur à l'interface entre deux matériaux à des températures différentes. Bien que les simulations théoriques et numériques de la TBR soient abondantes, les mesures expérimentales sont extrêmement difficiles et rares. Cela est néanmoins devenu essentiel pour toutes les applications et les avancées fondamentales.
Les chercheurs de l'iLM ont réussi à extraire la valeur quantitative de la TBR à l'interface entre le carbone et l'eau en utilisant la spectroscopie optique résolue dans le temps. Ils ont appliqué cette technique pour observer le refroidissement ultrarapide (échelles de temps des picosecondes à nanosecondes) de nanotubes de carbone multiparois dispersés dans l'eau, après leur chauffage ultrarapide avec des impulsions optiques femtosecondes. L'analyse fine de la dynamique de refroidissement permet d'extraire la résistance thermique d'interface. Singulièrement, les expériences ont révélé que la TBR est réduite d'un facteur cinq (améliorant ainsi le transport thermique) lorsque des groupes hydroxyle (-OH) sont liés de manière covalente à la surface du carbone.
A quantitative and detailed understanding of the physical mechanisms governing heat transfer at both macro and nanoscales is essential for thermal management, device cooling, optimizing thermal conductivity, and fundamental science. A key parameter in this context is Thermal Boundary Resistance (TBR), also known as Kapitza resistance. TBR is the resistance that impedes heat flow at the interface between two materials with different temperatures. Although theoretical and numerical simulations of TBR are abundant, experimental measurements are exceedingly difficult and uncommon. This has, however, become essential for all applications and fundamental advancements.
Researchers at iLM have successfully quantified the TBR at the interface between carbon and water using time-resolved optical spectroscopy. They employed this technique to observe the ultrafast cooling (on the pico- to nanosecond timescale) of multi-wall carbon nanotubes dispersed in water, following impulsive heating with femtosecond optical pulses. The fine analysis of the cooling dynamics leads to quantitative assessment of the TBR. Remarkably, the experiments revealed that TBR is reduced fivefold (enhancing thermal transport) when hydroxyl (-OH) groups are covalently attached to the carbon surface.

 

 

Mécanique d’Hydres en régénération

Mechanics of regenerating Hydras

Thomas Perros et Olivier Cochet-Escartin (équipe Biophysique), en collaboration avec des collègues de.Paris et Toulouse, ont publié un article intitulé "Mechanical characterization of regenerating Hydra tissue sphères" dans la revue Biophysical Journal.
Thomas Perros and Olivier Cochet-Escartin (équipe Biophysique), in collaboration with colleagues from.Paris and Toulouse, published an article titled "Mechanical characterization of regenerating Hydra tissue spheres" in Biophysical Journal.

Les hydres sont des organismes vivants capables de régénérer. N’importe quel morceau extrait d’une hydre reforme un organisme complet et fonctionnel au bout de quelques jours. Cette régénération implique une brisure de symétrie afin de définir l’axe tête-pied du futur organisme. Il est aujourd’hui largement accepté que cette brisure de symétrie implique à la fois un système de réaction-diffusion biochimique et les forces mécaniques agissant dans le tissu. Or, les propriétés mécaniques de ces morceaux en régénération étaient jusque-là mal comprises.
En utilisant un nouvel outil de microfluidique, les auteurs ont réalisé des expériences de micro-aspiration parallélisées sur ces échantillons permettant de mesurer leur déformation sous une contrainte contrôlée. Ils ont mis en évidence un comportement complexe, se rapprochant d’un fluide à seuil avec trois régimes par contrainte croissante : une réponse élastique non-linéaire, une réponse visco-élastique et la rupture des tissus. A l’aide de modèles de rhéologie et de simulations numériques, ils offrent donc une description complète de la mécanique des hydres en régénération, ouvrant ainsi la voie à de nouvelles études se concentrant sur le lien entre mécanique et génétique dans la brisure de symétrie.
Hydras are living organisms capable of full body regeneration. Any piece excised from a hydra reforms a full, viable organism in a few days. This regeneration requires a symmetry breaking to define the head to tail axis of the new organism. It is now widely accepted that this symmetry breaking relies on both a reaction-diffusion biochemical system and internal forces in the tissues. However, the mechanical properties of these regenerating pieces remained unknown.
Using an original microfluidic tool, the authors performed parallelized micro-aspiration experiments on these samples, allowing to measure their deformation under a controlled constraint. They found a complex behavior, akin to a yield stress fluid with three different regimes when increasing the constraint: a non-linear elastic response, a visco-elastic response and rupture of the tissue. Using rheological models and numerical simulations, they offer a complete description of regenerating hydras, paving the way for new studies focusing on the interplay between mechanics and genetics in symmetry breaking.
Scroll To Top